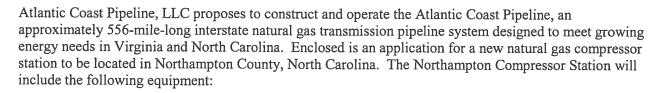
Web Address: www.dom.com

NC DENR Raleigh Regional Office

September 16, 2015

BY: OVERNIGHT MAIL


Patrick Butler Regional Supervisor Raleigh Regional Office NCDENR Division of Air Quality Suite 101 3800 Barrett Drive Raleigh, NC 27609

RE:

Northampton Compressor Station

New Source Permit

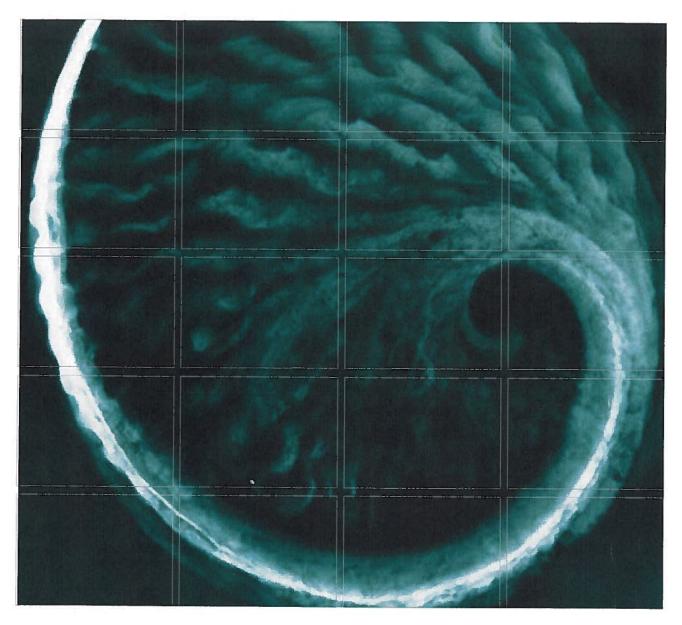
Dear Mr. Butler:

- Solar Taurus 70 combustion turbine;
- Solar Centaur 50L combustion turbine;
- Solar Centaur 40 combustion turbine:
- Caterpillar G3516 emergency generator;
- Boiler rated at 6.3 MMBtu/hr;
- Accumulator tank with a capacity of 2,500 gallons;
- Hydrocarbon waste tank with a capacity of 1,500 gallons;
- Aqueous ammonia storage tank with a capacity of 8,000 gallons;

The application also includes various operational natural gas releases associated with station components and piping fugitive emissions related to equipment proposed at the Northampton Compressor Station.

Enclosed with this permit application is the fee in the amount of \$50.

Should you have any questions or need additional in the formation, please feel free to contact William Scarpinato at (804) 273-3019 or via email at william.a.scarpinato@dom.com.


Sincerely,

Robert M. Bisha

Project Director, Atlantic Coast Pipeline

Dominion Environmental Services

Last My Broke

Prepared For:

Atlantic Coast Pipeline

Atlantic Coast Pipeline, LLC

Atlantic Coast Pipeline Project Permit Application Northampton Compressor Station Northampton County, North Carolina

September 2015

Environmental Resources Management 75 Valley Stream Parkway, Suite 200 Malvern, PA 19355

www.erm.com

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 BACKGROUND	1
	1.2 APPLICATION OVERVIEW	1
2.0	FACILITY AND PROJECT DESCRIPTION	ئ
	2.1 NORTHAMPTON COMPRESSOR STATION	ئ
	2.2 AGGREGATION DETERMINATION	ć
3.0	PROJECT EMISSIONS INFORMATION	2
	3.1 COMBUSTION TURBINES	2
	3.2 EMERGENCY GENERATOR	11
	3.3 BOILER	11
	3.4 FUGITIVE EMISSIONS	12
	3.5 STORAGE TANKS	1 3
	3.6 PROJECT EMISSIONS	14
<i>4.0</i>	FEDERAL REGULATORY REQUIREMENTS	16
	4.1 NEW SOURCE PERFORMANCE STANDARDS (NSPS)	16
	4.1.1 40 CFR 60 Subpart Dc – Standards of Performance for Small Industrial- Commercial-Institutional Steam Generating Units	16
	4.1.2 40 CFR 60 Subpart Kb - Standards of Performance for Volatile Organic Liq Storage Vessels	uid 16
	4.1.3 40 CFR 60 Subpart JJJJ - Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	16
	4.1.4 40 CFR 60 Subpart KKKK – Standards of Performance for Stationary Combustion Turbines	16
	4.1.5 40 CFR 60 Subparts OOOO and OOOOa – Standards of Performance for Cool oil and Natural Gas Production, Transmission and Distribution	rude 17
	4.2 NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTA (NESHAP)	NTS 18

4.2.1 40 CFR 63 Subpart HHH - National Emissions Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities	19
4.2.2 40 CFR 63 Subpart DDDDD - National Emission Standards for Hazardous A Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers And Process Heaters	ir 19
4.2.3 40 CFR 63 Subpart JJJJJJ - National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources	19
4.2.4 40 CFR 63 Subpart YYYY – National Emissions Standards for Hazardous Air Pollutants for Stationary Combustion Turbines	19
4.2.5 40 CFR 63 Subpart ZZZZ - National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines	19
4.3 PREVENTION OF SIGNIFICANT DETERIORATION (PSD) AND NON- ATTAINMENT NEW SOURCE REVIEW	19
4.4 TITLE V OPERATING PERMIT	20
4.5 MAINTENANCE EMISSIONS AND FEDERAL ROUTINE MAINTENANCE, REPAIR AND REPLACEMENT PROVISIONS (RMRR)	20
4.6 CHEMICAL ACCIDENT PREVENTION AND RISK MANAGEMENT PROGRAMS (RMP)	20
4.7 ACID RAIN REGULATIONS	21
4.8 STRATOSPHERIC OZONE PROTECTION REGULATIONS	21
4.9 GREENHOUSE GAS REPORTING	21
STATE REGULATORY APPLICABILITY	22
PROPOSED COMPLIANCE DEMONSTRATIONS	26

5.0

6.0

LIST OF FIGURES

FIGURE 2.1	NORTHAMPTON COMPRESSOR STATION LOCATION MAP
FIGURE 2.2	PROCESS FLOW DIAGRAM
LIST OF TABLES	
TABLE 3.1	PRE-CONTROL TURBINE LOW TEMPERATURE EMISSION RATES (< 0° F AND > -20° F)
TABLE 3.2	TURBINE CONTROLLED SHORT-TERM EMISSION RATES
TABLE 3.3	TURBINE POTENTIAL EMISSIONS DURING START-UP EVENTS
TABLE 3.4	TURBINE POTENTIAL EMISSIONS DURING SHUTDOWN EVENTS
TABLE 3.5	TURBINE POTENTIAL EMISSIONS
TABLE 3.6	EMERGENCY GENERATOR POTENTIAL EMISSIONS
TABLE 3.7	BOILER POTENTIAL EMISSIONS
TABLE 3.8	FUGITIVE COMPONENT POTENTIAL EMISSIONS
TABLE 3.9	FACILITY-WIDE POTENTIAL EMISSIONS (TPY)
TABLE 5.1	STATE REGULATORY APPLICABILITY

LIST OF APPENDICES

APPENDIX A	NC DENR PERMIT APPLICATION FORMS
APPENDIX B	FACILITY PLOT PLAN
APPENDIX C	POTENTIAL TO EMIT CALCULATIONS
APPENDIX D	VENDOR SPECIFICATIONS
APPENDIX E	SECRETARY OF STATE REGISTRATION

1.0 INTRODUCTION

1.1 BACKGROUND

Atlantic Coast Pipeline, LLC (ACP, LLC) proposes to construct and operate the Atlantic Coast Pipeline (ACP), an approximately 556-mile-long interstate natural gas transmission pipeline system designed to meet growing energy needs in Virginia and North Carolina. The proposed project has the capacity to deliver 1.5 billion standard cubic feet of natural gas per day (bscf/d) from Pennsylvania and West Virginia to power generation facilities and other end-users.

In support of the ACP, Dominion Transmission Inc. (DTI), a subsidiary of Dominion, proposes to construct and operate the Northampton Compressor Station in Northampton County, North Carolina to provide compression to support the transmission of natural gas.

1.2 APPLICATION OVERVIEW

ACP, LLC submits this construction/operating permit application to the North Carolina Department of Environment and Natural Resources (NC DENR) for the authority to construct and operate the Northampton Compressor Station in Northampton County, North Carolina. This permit application narrative is provided to add clarification and/or further detail to the information in the permit application forms provided by NC DENR.

Concurrent with the submittal of this air quality application, other required environmental permits and approvals are being pursued with the appropriate regulatory agencies.

This section (Section 1) contains introductory information. Section 2 presents a description of the Northampton Compressor Station and its associated equipment. The estimated emissions of regulated pollutants from the equipment and operating scenarios are presented in Section 3. Section 4 addresses federal regulatory requirements applicable to project sources and Section 5 provides a review of State regulatory requirements. Section 6 provides ACP, LLC's proposed compliance demonstration methods.

This application also contains:

- Appendix A NC DENR Permit Application Forms;
- Appendix B Facility Plot Plan;
- Appendix C Potential to Emit Calculations;
- Appendix D Vendor Specifications; and
- Appendix E Secretary of State Registration.

2.0 FACILITY AND PROJECT DESCRIPTION

2.1 NORTHAMPTON COMPRESSOR STATION

The Northampton Compressor Station will be located in Northampton County, North Carolina to provide compression to support the transport of natural gas. The proposed project will require the construction of a new facility subject to the requirements of 15A NCAC 02Q.0300 – Construction and Operation Permits.

ACP, LLC seeks authorization for the construction and operation of:

- One (1) Solar Taurus 70 Combustion Turbine (CT-01);
- One (1) Solar Centaur 50L Combustion Turbine (CT-02);
- One (1) Solar Centaur 40 Combustion Turbine (CT-03);
- One (1) Caterpillar G3516 Emergency Generator (EG-01) rated at 1,416 hp;
- One (1) Boiler (WH-01) rated at 6.3 Million British Thermal Units per hour (MMBtu/hr);
- One (1) Accumulator Tank (TK-1) with a capacity of 2,500 gallons;
- One (1) Hydrocarbon Waste Tank (TK-2) with a capacity of 1,500 gallons;
- One (1) Aqueous Ammonia Storage Tank (TK-3) with a capacity of 8,000 gallons; and
- Various operational natural gas releases associated with station fugitive components (Fug-01) and piping fugitive emissions (Fug-02) related to the equipment proposed at the Northampton Compressor Station.

A map displaying the location of the Northampton Compressor Station is provided as Figure 2.1. A process flow diagram (PFD) for the Northampton Compressor Station is provided as Figure 2.2.

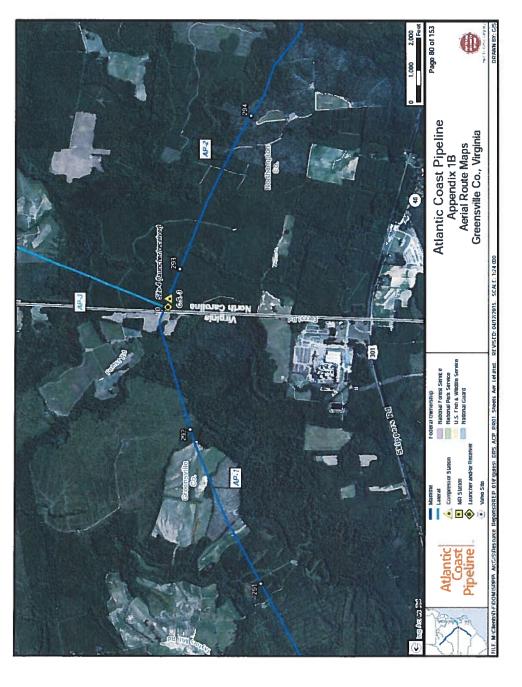


FIGURE 2.2 PROCESS FLOW DIAGRAM

2.2 AGGREGATION DETERMINATION

The Northampton Compressor Station will be operated by DTI. Stationary sources of air pollutants may require aggregation of total emission levels if these sources share the same industrial grouping, are operating under common control, and are classified as contiguous or adjacent properties. Other than the interstate pipeline, which is specifically exempt from the requirement to aggregate as stated in the preamble to the 1980 PSD regulations, there are no facilities that would be considered adjacent to the Northampton Compressor Station and thus no other sources must be aggregated with the Northampton Compressor Station.

3.0 PROJECT EMISSIONS INFORMATION

As discussed in Section 2.1 of this application, ACP, LLC seeks the authority to construct and operate new emission sources. This section provides a description of the basis for the estimation of emissions from these sources.

3.1 COMBUSTION TURBINES

The proposed natural gas-fired turbines to be installed at the Northampton Compressor Station will be equipped with Solar's SoLoNOx dry low NO_x combustor technology as well as add-on emission controls including selective catalytic reduction (SCR) for NO_x and oxidation catalyst for CO and VOC.

Emissions for the Solar Turbines assume that the units will operate up to 8,760 hours per year and up to 100% rated output. Pre-control (SCR and oxidation catalyst) emissions of nitrogen oxides (NO_x), carbon monoxide (CO) and volatile organic compounds (VOC) are based on emission rates provided by Solar. VOC emissions are conservatively estimated as 10% of uncombusted hydrocarbon (UHC). Solar also provided emission estimates for UHC, carbon dioxide (CO₂), formaldehyde, and total hazardous air pollutants.

The pre-control emission rates for normal operating conditions are as follows (all emissions rates are in terms of parts per million dry volume (ppmvd) @ 15% O₂):

- 9 ppmvd NO_x for the Centaur 50L and Taurus 70;
- 25 ppvd NO_x for the Centaur 40;
- 25 ppmvd CO for the Centaur 50L and Taurus 70;
- 50 ppmvd CO for the Centaur 40;
- 25 ppmvd UHC; and
- 2.5 ppmvd VOC.

The proposed SCR will further reduce the NO_x emission rate for each of the proposed turbines to 5 ppmvd at 15% O2.

Per vendor estimates, the oxidation catalyst will provide additional control for CO, to achieve 5 ppmvd CO @ 15% O2. The catalyst will also control organic compound emissions and will provide an estimated 50% control for VOC and formaldehyde.

Vendor estimates for SCR and oxidation catalyst performance are provided in Appendix D.

At very low load and cold temperature extremes, the turbine system must be controlled differently in order to assure stable operation. The required adjustments to the turbine controls at these conditions cause emissions of NO_x,

CO and VOC to increase (emission rates of other pollutants are unchanged). The only times when low-load operation (non-normal SoLoNOx operation) is expected to occur are during periods of startup and shutdown. Solar has provided emissions estimates during start-up and shutdown (see Solar Product Information Letter (PIL) 170, included as part of the vendor attachments to this application for more detail).

Similarly, Solar has provided emissions estimates for low temperature operation (inlet combustion air temperature less than 0° F and greater than -20° F). Table 3.1 provides estimated pre-control emissions from the turbines at low temperature conditions.

TABLE 3.1 PRE-CONTROL TURBINE LOW TEMPERATURE EMISSION RATES (< 0° F AND > - 20° F)¹

Solar Model	Applicable Load	NOx, ppm	CO, ppm	UHC, ppm
Taurus 70 Centaur 50L	50-100% load	120	150	50
Centaur 40	80-100% load	120	150	50

^{1.} Emissions Estimates from Table 2 of Solar PIL 167.

ACP, LLC reviewed historic meteorological data from the previous five years for the region to estimate the worst case number of hours per year under sub-zero (less than 0° F but greater than -20° F) conditions. The annual hours of operation during sub-zero conditions were conservatively assumed to be not more than 50 hours per year.

A summary of the potential emissions of NO_x , CO, and VOC during normal operations and low temperature scenarios is provided in Table 3.2.

^{2.} Centaur 50L emissions based on Centaur 50 Emissions Rates

TABLE 3.2 TURBINE CONTROLLED SHORT-TERM EMISSION RATES

Pollutant	Operating Scenario	CT-01 Solar Taurus 70 Turbine Ib/hr	CT-02 Solar Centaur 50L Turbine Ib/hr	CT-03 Solar Centaur 40 Turbine Ib/hr
NO _x	Normal	1.77	1.10	0.94
	Low Temp.	23.6	14.7	12.5
CO	Normal	1.06	0.66	0.57
	Low Temp.	6.36	3.96	3.42
VOC	Normal	0.155	0.095	0.08
	Low Temp.	0.310	0.19	0.16

The emission rates presented in Table 3.2 are estimates based on the emissions factors provided by Solar multiplied by the control efficiency expected from the installation of the SCR (approximately 80% NO $_{x}$ control for the Solar Centaur 40 Turbine and 44% NO $_{x}$ control for the Solar Taurus 70 and Centaur 50L Turbines) and oxidation catalyst (approximately 50% VOC control for all turbines, 90% CO control for the Solar Centaur 40 Turbine, and 80% CO control for the Solar Taurus 70 and Centaur 50L Turbines).

Potential turbine emissions also include conservatively assumed uncontrolled potential emissions from start-up and shutdown events calculated using emission data provided by Solar. Although these emissions are provided as uncontrolled for the purposes of potential to emit estimations, ACP, LLC expects that some control may be achieved by the combustion turbine control devices during the start-up and shutdown events. Ton per year potential emission estimates are based on an assumed count of 100 start-up and 100 shutdown events per year. The duration of each start-up and shutdown is expected to be approximately 10 minutes per event. Thus, it is assumed that there will be approximately 33.3 hours of start-up and shutdown event time when the unit may not be operating in SoLoNOx mode. Table 3 of Solar PIL 170 was used as basis for emissions during these events.

A summary of the potential emissions during start-up and shutdown events is presented in Tables 3.3 and 3.4.

To practically track these events and associated emissions, ACP, LLC proposes to keep track of the total number of hours of non-SoLoNOx mode (a parameter monitored by the turbine control logic) and utilize an average start-up / shutdown emission rate (equivalent lb/hr based on 10 minutes per event). The proposed compliance demonstration is provided in Section 6 of this application.

TABLE 3.3 TURBINE POTENTIAL EMISSIONS DURING START-UP EVENTS

	CI	-01	CT	-02	CT-	03
Pollutant	Solar Tauru	s 70 Turbine	Solar Centau	r 50L Turbine	Solar Ce Turb	
	lb/event	tpy	lb/event	tpy	lb/event	Тру
NO _x	0.800	0.0400	0.800	0.0400	0.700	0.0350
CO	73.1	3.66	69.1	3.46	64.4	3.22
VOC	0.840	0.0420	0.800	0.0400	0.740	0.0370
CO ₂	519	26.0	469	23.5	392	19.6
CH ₄	3.36	0.168	3.20	0.160	2.96	0.148
CO₂e	603	30.2	549	27.5	466	23.3

TABLE 3.4 TURBINE POTENTIAL EMISSIONS DURING SHUTDOWN EVENTS

	CI	-01	CT	-02	CT-	-03
Pollutant	Solar Tauru	s 70 Turbine	Solar Centaur	50L Turbine	Solar Cer Turb	
	lb/event	tpy	lb/event	tpy	lb/event	tpy
NO_x	1.10	0.0550	0.400	0.0200	0.300	0.0150
CO	93.4	4.67	35.4	1.77	30.2	1.51
VOC	1.06	0.0530	0.400	0.0200	0.340	0.0170
CO ₂	575	28.8	217	10.9	181	9.05
CH ₄	4.24	0.212	1.60	0.0800	1.36	0.0680
CO₂e	681	34.1	257	12.9	215	10.8

Table 3.5 includes the facility's potential emissions for the combustion turbines including normal continuous operation controlled by SoLoNOx mode, SCR, and oxidation catalyst, low temperature operation controlled by the SCR and oxidation catalyst as well, as the uncontrolled emissions associated with start-up and shutdown events.

TABLE 3.5 TURBINE POTENTIAL EMISSIONS

Pollutant	CT-01 Solar Taurus 70 Turbine	CT-02 Solar Centaur 50L Turbine	CT-03 Solar Centaur 40 Turbine
	tpy	tpy	tpy
NO _x	8.35	5.20	4.44
CO	13.1	8.19	7.29
VOC	0.775	0.477	0.405
SO ₂	1.43	0.894	0.760

PM_{Filt}	2.42	1.51	1.29
PM _{10-Filt}	2.42	1.51	1.29
PM _{2.5-Filt}	2.42	1.51	1.29
PM-Cond	5.99	3.74	3.18
CO ₂	50,035	31,329	26,747
CH ₄	4.00	2.50	2.14
N ₂ O	1.26	0.788	0.671
CO ₂ e	50,511	31,627	27,000
NH ₃	5.77	3.58	3.02
Total HAP	0.525	0.352	0.286
Formaldehyde	0.496	0.332	0.271

3.2 EMERGENCY GENERATOR

Emissions for the natural gas fired emergency generator assume up to 100 hours of operation per year and are calculated using EPA's AP-42 emission factors.

A summary of the emissions associated with the emergency generator are provided in Table 3.6.

TABLE 3.6 EMERGENCY GENERATOR POTENTIAL EMISSIONS

	EG-01
Pollutant	Caterpillar 3516
	tpy
NO _x	0.312
CO	0.295
VOC	0.0375
SO ₂	0.0003
PM _{-Filt}	0.0214
PM _{10-Filt}	0.0214
PM _{2.5-Filt}	0.0214
PM _{Cond}	0.006
CO ₂	77.9
CH4	0.290
CO₂e	85.1
Total HAP	0.0143
Formaldehyde	0.0099

3.3 BOILER

The proposed natural gas boiler will be used to provide building heat (space heating) only, and will have a maximum heat input capacity of 6.3 MMBtu/hr.

The boiler will use Low NOx Burners (LNB). Emissions for the proposed natural gas-fired Boiler are calculated using EPA's AP-42 emission factors for Natural Gas Combustion (Section 1.4) conservatively assuming 8,760 hours per year. 15A NCAC 02Q.0102(c)(2)(B)(iv) provides an exemption from the requirement to obtain an air permit for fuel combustion equipment with a heat input rating less than 10 MMBtu/hr that is used solely for space heating. As such, the proposed boiler is exempt from permitting requirements.

The potential emissions from the boiler are provided in Table 3.7.

TABLE 3.7 PROPOSED BOILER POTENTIAL EMISSIONS

	WH-01
Pollutant	Boiler
	tpy
NO _x	1.35
CO	2.27
VOC	0.149
SO ₂	0.0162
PM _{Filt}	0.0514
$PM_{10\text{-Filt}}$	0.0514
PM _{2.5-Filt}	0.0514
PM _{-Cond}	0.154
CO ₂	3,246
CH ₄	0.0622
N_2O	0.0595
CO ₂ e	3,266
Total HAP	0.0511
Hexane	0.0487

3.4 FUGITIVE EMISSIONS

The proposed project will include fugitive components including valves, flanges, pumps, etc. Emission factors for fugitive components were based on EPA's report on equipment leaks for oil and gas production facilities. It is expected that this facility will comply with recently proposed New Source Performance Standard Subpart OOOOa which incorporates leak detection

USEPA, 1995. "Emission factors from Protocol for Equipment Leak Emission Estimates," EPA-453/R-95-017 Table 2.4, Oil and Gas Production Operations Average Emission Factors.

monitoring. However, no credit for any reduced emissions has been taken in the numbers below.

Additionally, ACP, LLC has estimated emissions from blowdown events. ACP, LLC will minimize these events whenever possible, but blowdown of the machines and piping will sometimes occur for safety reasons and to ensure protection of equipment. ACP, LLC has also conservatively included estimated emissions from one site-wide blowdown event in these emission calculations. Such events are not routine, but typically occur once every five years.

The total fugitive emissions are summarized in Table 3.8.

TABLE 3.8 PROPOSED FUGITIVE COMPONENT POTENTIAL EMISSIONS

Pollutant	FUG-01 Fugitive Leaks - Blowdowns tpy	FUG-02 Fugitive Leaks - Piping tpy
VOC	18.8	20.0
CO ₂	19.5	20.7
CH ₄	643	683
CO ₂ e	16,092	17,106
Total HAP	1.06	1.13

3.5 STORAGE TANKS

The Northampton Compressor Station will operate three (3) aboveground storage tanks (ASTs). TK-1 (Accumulator Storage Tank) will have a capacity of 2,500 gallons and will receive and store pipeline liquids captured by the station's separators and filter-separators. The emissions associated with the operation of this accumulator storage tank are estimated using E&P Tanks to ensure capture of any flash emissions (which the EPA TANKS program cannot estimate). ACP, LLC has estimated that this storage tank will complete five (5) turnovers per year.

TK-2 (Hydrocarbon Waste Tank) will have a capacity of 1,500 gallons and will receive liquids from the compressor building and auxiliary building floor drains. The emissions associated with the operation of this hydrocarbon waste tank were calculated using EPA's TANKS program. ACP, LLC has estimated that this storage tank will complete five (5) turnovers per year.

The potential VOC emissions associated with the proposed new storage tanks, TK-1 and TK-2, are 0.35 tpy (0.08 lb/hr). Detailed emission calculations are provided in Appendix C of this document.

TK-3 (Aqueous Ammonia Storage Tank) will have a capacity of 8,000 gallons and will be used to supply aqueous ammonia to SCRs. 15A NCAC 02Q.0102(c)(1)(D)(iii) provides an exemption from the requirement to obtain an air permit for storage tanks used solely to store inorganic liquids. As such, Ammonia Storage Tank TK-3 is exempt from air permitting requirements.

3.6 PROJECT EMISSIONS

The potential emissions associated with the proposed new equipment at Northampton Compressor Station are summarized in Table 3.9 in tons per year. Detailed emission calculations are provided in Appendix C of this document.

TABLE 3.9 FACILITY-WIDE POTENTIAL EMISSIONS (TPY)

				Criteria Po	Pollutants					Greenhou	reenhouse Gases		Ammonia	Total
Unit ID	NOx	CO	VOC	SO_2	PM.Filt	PM _{10-Filt}	PM2.5-Filt	PMCond	CO2	CHT	N2O	COze	NH3	HAP
CT-01	8.35	13.0	0.775	1.43	2.42	2.42	2.42	5.99	50,035	4.00	1.26	50,511	5.77	0.525
CT-02	5.20	8.19	0.477	0.894	1.51	1.51	1.51	3.74	31,329	2.50	0.788	31,627	3.58	0.352
CT-03	4.44	7.29	0.405	0.760	1.29	1.29	1.29	3.18	26,747	2.14	0.671	27,000	3.02	0.286
EG-01	0.312	0.295	0.0375	0.0003	0.0214	0.0214	0.0214	900.0	77.9	0.290	0	85.1	0	0.0143
WH-01	1.35	2.27	0.149	0.0162	0.0514	0.0514	0.0514	0.154	3,246	0.0622	0.0595	3,266	0	0.0511
FUG-01	ı	,	18.8	•	•	1	ı	1	19.5	643	ı	16,092	1	1.06
FUG-02	ı	,	20.0	•	•	ä	1	1	20.7	683	,	17,106	E	1.13
TK-1	1	ı	0.350	,	,	ľ	ë	1	,	,	ı		1	,
TK-2	'	'	1.32E-05	,	•		•	ì	•		,	,	1	,
Total	19.7	31.1	41.1	3.10	5.29	5.29	5.29	13.1	111.475	1,335	2.78	145,686	12.4	3.42

4.0 FEDERAL REGULATORY REQUIREMENTS

4.1 NEW SOURCE PERFORMANCE STANDARDS (NSPS)

NSPS have been established by the EPA to limit air pollutant emissions from certain categories of new and modified stationary sources. The NSPS regulations are contained in 40 CFR Part 60 and cover many different source categories, and applicable categories are described below.

4.1.1 40 CFR 60 Subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

Subpart Dc applies to steam generating units for which construction, modification, or reconstruction is commenced after June 9, 1989 and that have a maximum design heat capacity of 100 MMBtu/hr or less, but greater than or equal to 10 MMBtu/hr. The new boiler will have a heat input capacity of 6.3 MMBtu/hr and thus is not subject to this regulation.

4.1.2 40 CFR 60 Subpart Kb - Standards of Performance for Volatile Organic Liquid Storage Vessels

This regulation applies to volatile organic liquid storage vessels with storage capacities greater than or equal to 75 cubic meters (19,812 gallons) for which construction, reconstruction, or modification commenced after July 23, 1984. There are no petroleum storage vessels with capacities greater than 19,812 gallons planned at the Northampton Compressor Station, and this regulation is therefore not applicable to the facility.

4.1.3 40 CFR 60 Subpart JJJJ – Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

NSPS Subpart JJJJ was promulgated on Jan 8, 2008 and is applicable to new stationary spark ignition internal combustion engines depending upon model year and size category. The new emergency generator is subject to the NO_x , CO and VOC requirements of this subpart and will comply with the emission standards under this subpart.

4.1.4 40 CFR 60 Subpart KKKK – Standards of Performance for Stationary Combustion Turbines

NSPS 40 CFR Part 60 Subpart KKKK regulates stationary combustion turbines with a heat input rating of 10 MMBtu/hr or greater that commence construction, modification, or reconstruction after February 18, 2005. Subpart KKKK limits emissions of NO_x as well as the sulfur content of fuel that is combusted from subject units.

The proposed Solar combustion turbines will be subject to the requirements of this subpart. Subpart KKKK specifies several subcategories of turbines, each with different NO $_{x}$ emissions limitations. The proposed turbines fall within the "medium sized" (> 50MMBtu/hr, < 850 MMBtu/hr) category for natural gas turbines. "Medium sized" turbines must meet a NO $_{x}$ limitation of 25 parts per million by volume (ppmv) at 15 percent oxygen (O $_{2}$), and "small sized, mechanical drive" turbines must meet a NO $_{x}$ limitation of 100 ppmv at 15 percent O $_{2}$ under the requirements of Subpart KKKK and units must minimize emissions consistent with good air pollution control practices during startup, shutdown and malfunction.

Solar provides an emissions guarantee of 9 parts per million volume dry (ppmvd) NO_x at 15 percent O_2 for the proposed $SoLoNO_x$ equipped units. These guarantees apply at all times except during periods of start-up and shutdown and periods with ambient temperatures below $0^\circ F$. In addition, SCR will be installed to lower emissions for all turbines to further reduce NO_x emissions to 5 ppmvd at 15 % O_2 , except during periods of start-up and shutdown and periods with ambient temperatures below $0^\circ F$.

ACP, LLC plans to conduct stack tests for NO_x emissions to demonstrate compliance with the Subpart KKKK emissions limits.

The NSPS Subpart KKKK emission standard for SO_2 is the same for all turbines, regardless of size and fuel type. All new turbines are required to meet an emission limit of 110 nanogram per joule (ng/J) (0.90 pounds [lbs]/megawatt-hr) or a sulfur limit for the fuel combusted of 0.06 lbs/MMBtu. The utilization of natural gas as fuel ensures compliance with the SO_2 standard due to the low sulfur content of natural gas.

4.1.5 40 CFR 60 Subparts OOOO and OOOOa – Standards of Performance for Crude Oil and Natural Gas Production, Transmission and Distribution

Subpart OOOO currently applies to affected facilities that commenced construction, reconstruction, or modification after August 23, 2011. Subpart OOOO establishes emissions standards and compliance schedules for the control of VOCs and SO₂ emissions for affected facilities producing, transmitting, or distributing natural gas. Compressors located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment are subject to this Subpart. Custody transfer is defined as the transfer of natural gas after processing and/or treatment in the producing operations. The station is located after the point of custody transfer, and therefore centrifugal compressors driven by the proposed turbines are not currently subject to this regulation. Storage vessels located in the natural gas transmission and storage segment that have the potential for VOC emissions equal to or greater than 6 tpy are also subject to this Subpart. All storage vessels will emit less than this threshold, and thus will not be subject to this regulation.

On August 18, 2015, EPA proposed amendments to 40 CFR 60, Subpart OOOO and proposed an entirely new Subpart OOOOa. If finalized, revisions proposed for Subpart OOOO would apply to oil and natural gas production, transmission, and distribution affected facilities that were constructed, reconstructed, and modified between August 23, 2011 and the Federal Register publication date (anticipated September 2015). Conversely, if finalized, Subpart OOOOa will apply to oil and natural gas production, transmission, and distribution affected facilities that are constructed, reconstructed, and modified after the Federal Register date. The proposed NSPS Subpart OOOOa would establish standards for both VOC and methane.

Based on the expected date of publication in the Federal Register, it is anticipated this project will be required to comply with the requirements of NSPS Subpart OOOOa. There is uncertainty if Subpart OOOOa will become final or what the final requirements will specifically include; however, the proposal contains provisions that would affect additional sources at the proposed facilities beyond Subpart OOOO. While storage tanks remain covered, Subpart OOOOa also includes provisions intended to reduce emissions from centrifugal compressors and equipment leaks from transmission and storage facilities. For centrifugal compressors, Subpart OOOOa proposes the use of dry seals or the control of emissions if wet seals are used. Dry seals are already planned for use in all proposed compressors. For equipment leaks, Subpart OOOOa proposes requiring periodic surveys using optical gas imaging (OGI) technology and subsequent repair of any identified leaks. The project will comply with all applicable leak detection provisions of proposed Subpart OOOOa.

4.2 NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP)

NESHAP regulations established in 40 CFR Part 61 and Part 63 regulate emission of air toxics. NESHAP standards primarily apply to major sources of Hazardous Air Pollutants (HAPs), though some Subparts of Part 63 have been revised to include area (non-major) sources. The NESHAP regulations under 40 CFR Part 61 establish emission standards on the pollutant basis whereas 40 CFR Part 63 establishes the standards on a source category basis. The Northampton Compressor Station will not emit any single HAP in excess of 10 tpy and will not emit combined HAPS in excess of 25 tpy, and will therefore be designated as an area source of HAPs.

4.2.1 40 CFR 63 Subpart HHH – National Emissions Standards for Hazardous Air Pollutants from Natural Gas Transmission and Storage Facilities

This regulation applies to certain affected facilities at major HAP sources. The Station will be an area HAP source. Therefore, this regulation is not applicable.

4.2.2 40 CFR 63 Subpart DDDDD - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers And Process Heaters

Industrial, commercial, or institutional boilers or process heaters located at a major source of HAPs are subject to this Subpart. The Northampton Compressor Station will not be a major source of HAPs, and therefore will not be subject to this Subpart.

4.2.3 40 CFR 63 Subpart JJJJJJ – National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources

This Subpart applies to area sources of HAPs. The Northampton Compressor Station will be an area source of HAPs; however, gas-fired boilers as defined by this Subpart are not subject to any requirements under this rule. As such, this subpart does not apply.

4.2.4 40 CFR 63 Subpart YYYY - National Emissions Standards for Hazardous Air Pollutants for Stationary Combustion Turbines

Stationary combustion turbines located at major sources of HAP emissions are subject to this Subpart. The Northampton Compressor Station will be an area HAP source. Therefore, this regulation is not applicable.

- 4.2.5 40 CFR 63 Subpart ZZZZ National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

 The emergency generator is subject to the NESHAP requirements under 40 CFR Part 63 Subpart ZZZZ (and applies to both major and area sources of HAPs). However, the NESHAP refers to the NSPS for all applicable requirements. Therefore, compliance with the NSPS requirements ensures compliance with the NESHAP requirements.
- 4.3 PREVENTION OF SIGNIFICANT DETERIORATION (PSD) AND NON-ATTAINMENT NEW SOURCE REVIEW

The NC DENR State Regulations address federal regulations where the state of North Carolina has been delegated enforcement authority, including Prevention of Significant Deterioration (PSD) permitting (15A NCAC 02D.0530).

The Northampton Compressor Station will be located in Northampton County. The air quality of Northampton County is designated by the U.S. EPA as either "better than normal standards" or "unclassified/attainment" for all criteria pollutants (40 CFR 81.318). As such, new construction or modifications that result in emission increases are potentially subject to the PSD permitting regulations.

PSD applicability depends on the existing status of a facility (i.e. major or minor source) and the net emissions increase associated with the project. The major source threshold for PSD applicability for a facility is 250 tons per year (tpy) of each regulated pollutant unless the source is included on a list of 28 specifically defined industrial source categories for which the PSD "major" source threshold is 100 tpy. Since the Northampton Compressor Station is not one of the 28 listed sources, the PSD major source threshold is 250 tpy of any pollutant regulated by the Clean Air Act (CAA). Potential emissions of each criteria pollutant from the proposed facility will not exceed 250 tpy, as shown in Section 3. Therefore, the facility and project are not subject to PSD review.

4.4 TITLE V OPERATING PERMIT

See Section 5.0 for Title V applicability information.

4.5 MAINTENANCE EMISSIONS AND FEDERAL ROUTINE MAINTENANCE, REPAIR AND REPLACEMENT PROVISIONS (RMRR)

As part of normal operations of the Northampton Compressor Station, ACP, LLC will routinely conduct activities associated with maintenance and repair of the facility equipment. These maintenance and repair activities will include, but will not be limited to, compressor engine startup/shutdowns, calibrating equipment, changing orifice plates, deadweight testing, emergency power generator run times, changing equipment filters (e.g., oil filters, separator filters), and use of portable gas/diesel engines for air compressors and lube guns.

Furthermore, in order to ensure the reliability of natural gas deliveries to their customers, ACP, LLC may conduct equipment and component replacement activities that conform to the currently applicable federal laws and regulations.

4.6 CHEMICAL ACCIDENT PREVENTION AND RISK MANAGEMENT PROGRAMS (RMP)

The Northampton Compressor Station will not be subject to the Chemical Accident Prevention Provisions (40 CFR 68.1), as no chemicals subject to regulation under this Subpart will be present onsite. The aqueous ammonia stored in TK-3 will have a concentration of less than 20%.

4.7 ACID RAIN REGULATIONS

The Northampton Compressor Station will not sell electricity and is a non-utility facility. Therefore, the facility will not be subject to the federal acid rain regulations found at 40 CFR Parts 72 through 77.

4.8 STRATOSPHERIC OZONE PROTECTION REGULATIONS

Subpart F, Recycling and Emissions Reductions, of 40 CFR Part 82, Protection of Stratospheric Ozone, generally requires that all repairs, service, and disposal of appliances containing Class I or Class II ozone depleting substances be conducted by properly certified technicians. The facility will comply with this regulation as applicable.

4.9 GREENHOUSE GAS REPORTING

On November 8, 2010, the USEPA finalized GHG reporting requirements under 40 CFR Part 98. Subpart W of 40 CFR Part 98 requires petroleum and natural gas facilities with actual annual GHG emissions equal to or greater than 25,000 metric tons CO₂e to report GHG from various processes within the facility. Following this project, is expected that the station will be subject to GHG emissions reporting. If the emissions threshold is met or exceeded, ACP, LLC will comply with the applicable GHG reporting requirements.

5.0 STATE REGULATORY APPLICABILITY

This section outlines the NC State air quality regulations that could be reasonably expected to apply to the Northampton Compressor Station, and presents an applicability determination for each of these regulations based on activities planned at the Station and the emissions of regulated air pollutants associated with this project. This review is presented to supplement and/or add clarification to the information provided in the NC DENR permit application forms.

The NC DENR State Regulations address federal regulations where the state of North Carolina has been delegated enforcement authority, including Prevention of Significant Deterioration (PSD) permitting, Title V permitting, New Source Performance Standards (NSPS), and National Emission Standards for Hazardous Air Pollutants (NESHAP). The regulatory requirements in reference to the Northampton Compressor Station are described in Table 5.1 below.

TABLE 5.1 STATE REGULATORY APPLICABILITY

Regulatory Citation	Applicable Requirement	Compliance Approach
Construction and Operation Permits (15A NCAC 02Q.0300)	Requires sources to obtain air permits via the guidelines and rules established in 02Q.0300 prior to construction.	The enclosed permit application for a combined construction and operating permit satisfies the requirements of this regulation for the proposed Northampton Compressor Station.
Sulfur Dioxide Emissions from Combustion Sources (15A NCAC 02D.0516)	Limits SO ₂ from any source of combustion that is discharged to the atmosphere to no more than 2.3 pounds of SO ₂ per MMBtu input.	The use of pipeline quality natural gas as fuel for all of the facility's fuel combustion sources constitutes compliance with this rule. In addition, if a source is subject to an NSPS or NESHAP SO ₂ emission standard, the source shall comply with the NSPS or NESHAP SO ₂ emission standard rather than this Rule.
Control of Nitrogen Dioxide and Nitrogen Oxides Emissions (15A NCAC 02D.0519)	Limits NO _x emissions from sulfuric acid plants and boilers with a capacity of 250 MMBtu/hour or more combusting oil, gas, coal, or a combination of these fuels.	The new boiler will have a maximum heat input capacity of 6.3 MMBtu/hr, and thus is not subject to this regulation.
Control of Visible Emissions (15A NCAC 02D.0521)	Limits opacity emissions from fuel burning operations and industrial processes, including testing of emergency generators. For sources manufactured after July 1, 1971, visible emissions shall not be more than 20 percent opacity when averaged over a six-minute period. In addition, if a source is subject to an NSPS or NESHAP opacity emission standard, the source shall comply with the NSPS or NESHAP opacity emission standard rather than this Rule.	All sources will comply with the provisions of this rule by the combustion of pipeline quality natural gas.
Prevention of Significant Deterioration (15A NCAC 02D.0530)	Establishes Prevention of Significant Deterioration regulations.	The facility and project are not subject to PSD review. See Section 4 for the PSD regulatory evaluation for Northampton Compressor Station.
Excess Emissions Reporting and Malfunctions (15A NCAC 02D.0535)	Establishes State-specific requirements, definitions, and reporting requirements for equipment and emission control device excess emissions.	The Northampton Compressor Station will comply with these requirements as applicable. In addition, sources subject to an NSPS or NESHAP rule are not subject to this regulation, unless excess emissions exceed an emission limit established in a permit limit issued under 15A NCAC 02Q.0700 that is more stringent than the applicable NSPS or NESHAP rule.

Regulatory Citation	Applicable Requirement	Compliance Approach
Particulates from Fugitive Dust Emission Sources (15A NCAC 02D.0540)	Facilities required to obtain a permit under 15A NCAC 02Q or subject to requirements under 15A NCAC 02D shall not cause or allow fugitive dust emissions to cause or contribute to substantive complaints.	The Northampton Compressor Station will comply with all applicable requirements, including reporting requirements in the event of substantive fugitive dust complaints.
Monitoring, Recordkeeping, and Reporting 15A NCAC 02D.0600	This regulation sets forth general monitoring, recordkeeping, and reporting requirements applicable to sources subject to the requirements of 15A NCAC 02D or 15A NCAC 02Q.	The Northampton Compressor Station will comply with all applicable requirements in this regulation.
Volatile Organic Compounds (15A NCAC 02D.0900)	This regulation sets forth work practice requirements for sources (e.g., solvents) emitting VOCs.	The Northampton Compressor Station is not expected to emit greater than 15 pounds VOC per day, and is therefore only potentially subject to sections .0925 and .0958 of this regulation. However, all storage tanks at the facility will have a capacity less than 39,000 gallons, and the facility is therefore not subject to section .0925. The facility will comply with all applicable requirements of section .0958.
Control of Toxic Air Pollutants (15A NCAC 02D.1100 and 02Q.0700)	This regulation requires facilities emitting toxic air pollutants greater than designated thresholds to obtain air toxics permits.	The Northampton Compressor Station 's natural gas fired combustion sources will have an aggregate allowable heat input value less than 450 MMBtu/hour and will be the only sources of benzene at the facility. As such, no air dispersion modeling has been included with this permit application and a permit to emit toxic air pollutants will not be required (15 NCAC 02Q.0702).
Nitrogen Oxides (15A NCAC 02D.1400)	This regulation sets forth various requirements for sources emitting NO _x .	stationary combustion turbines located at major sources of NO _x emissions located in certain counties. As Northampton County is excluded from this list, the proposed turbines are not subject to these requirements. 15A NCAC 02D.1409 and .1423 apply to internal combustion engines (ICE), which are defined as "reciprocating ICE". As the turbines do not meet this definition, these requirements do not apply. Emergency generators are not subject to this rule (15A NCAC 02D.1402(h)(3)). The boiler is exempt from air permitting requirements, and is therefore also exempt from these requirements (15A NCAC 02D.1402(h)(1)).

Regulatory Citation	Applicable Requirement	Compliance Approach
Title V Procedures (15A NCAC 02Q.0500)	This regulation outlines the NC DENR Title V Permitting Program.	The Northampton Compressor Station's criteria pollutant PTE will no exceed the applicable Title V major source threshold of 100 tpy per criteria pollutant. In addition, the facility's HAP PTE will not exceed 10 tpy per individual HAP, and will not exceed 25 tpy for combined HAPs. Therefore, the Northampton Compressor Station will be a minor source of emissions with respect to the Title V Operating Program.

6.0 PROPOSED COMPLIANCE DEMONSTRATIONS

The following methods are proposed for demonstrating ongoing compliance for the sources described in this application:

Compressor Turbines (CT-01 through CT-03)

 NO_x

Annual stack testing (or semi-annual testing as allowed) will be completed to demonstrate compliance with the NSPS Subpart KKKK emissions limits (NO₂ emissions).

Compliance with the combustion turbines potential to emit will be demonstrated on a 12-month rolling total basis by the sum of the following emissions:

- Normal Operation: The average emission rate from the most recent stack test (lb/hour) times the number of hours operating in SoLoNOx mode (mode indication provided and recorded by control logic on turbine).
- Low Temperature (< 0° F) Operation: The proposed controlled emission rates (lb/hr, see Table 3.2) determined using the Solar provided emissions factor multiplied by the control efficiency of the SCR times the number of hours when inlet combustion air for turbine was measured to be below 0 degrees F.
- Startup and Shutdown Emissions (< 50% load): The Solar-provided emission rates (see Tables 3.3 and 3.4) divided by Solar-assumed duration for startups and shutdowns (1/6 of an hour each) times the number of hours operating in non-SoLoNOx mode (mode indication provided and recorded by control logic on the turbine).

CO, VOC, PM₁₀/PM_{2.5}:

Initial stack testing will be completed to determine $PM_{10}/PM_{2.5}$ emission rates (lb/MMBtu). Fuel firing will be tracked and used to calculate annual (rolling 12-month total) ton per year emissions.

Initial stack testing will be competed to determine VOC and CO emission rates. Compliance with the combustion turbines potential to emit will be demonstrated on a 12-month rolling total basis by the sum of the following emissions:

- Normal Operation: The average emission rate from the most recent stack test (lb/hour) times the number of hours operating in SoLoNOx mode (mode indication provided and recorded by control logic on turbine).
- Low Temperature (< 0° F) Operation: The proposed controlled emission rates (lb/hr, see Table 3.2) determined using the Solar provided emissions factor multiplied by the control efficiency of the oxidation catalyst times the number of hours when inlet combustion air for turbine was measured to be below 0 degrees F.
- Startup and Shutdown Emissions (< 50% load): The Solar-provided emission rates (see Tables 3.3 and 3.4) divided by Solar-assumed duration for startups and shutdowns (1/6 of an hour each) times the number of hours operating in non-SoLoNOx mode (mode indication provided and recorded by control logic on the turbine).

GHG:

Total annual fuel volume will be tracked to determine total MMBtu of firing. This value times the EPA Mandatory Reporting Rule natural gas emission factor (40 CFR Part 98 Subpart C) times the Global Warming Potential (40 CFR Part 98 Subpart A) will be used to calculate ton per year CO₂e emissions.

Emergency Generator

Records of the monthly emergency and non-emergency use will be maintained to confirm compliance with the annual limit for non-emergency operation. If a non-certified engine is installed or if a certified engine is installed but operated as non-certified an initial stack test and testing every 8760 operating hours or three years (whichever comes first) will be conducted.

Other Combustion Sources

If not otherwise specified above, the amount of fuel fired in units and/or hours of operation will be tracked and multiplied by the appropriate emission factor to calculate emissions on an annual basis.

APPENDICES

APPENDIX A

NC DENR PERMIT APPLICATION FORMS

FORM A1

FACILITY (General Information)

PEVISED 05/25/12	NCDENR/Division of Air Quality - Applicatio	n for Air Permit to Construct/Operate	A1
NOT	E- APPLICATION WILL NOT BE PRO	CESSED WITHOUT THE FOLLOWING:	
✓ Local Zoning Consi	stency Determination (if required)	eduction & Recycling Survey Form (Form A4)	
☑ Responsible Offic	al/Authorized Contact Signature	te Number of Copies of Application P.E. Seal (if required)	non della
	GENERAL INF	ORMATION	
Legal Corporate/Owner Name:	Atlantic Coast Pipeline, LLC	IAS I	E MIN
Site Name: Norhampton Compressor Statio		[1] [2 Sar	10 H H
Site Address (911 Address) Line 1:		GG SEP 17 2005	
Site Address Line 2:			
City: Pleasant Hill		State: North Carolina	
Zip Code:			
	CONTACT INF		al Office
Permit/Technical Contact:		Facility/Inspection Contact:	
Name/Title: William Scarpinato	Davidance	Name/Title:	
Mailing Address Line 1: 5000 Dominion I	Soulevard	Mailing Address Line 1:	
Mailing Address Line 2: 2 NE		Mailing Address Line 2:	
City: Glen Allen State:		City: State: Zip Code:	
Phone No. (area code) 804-273-3019	Fax No. (area code) 804-273-2601	Phone No. (area code) Fax No. (area code)	
Email Address: william.a.scarpin	ato@dom.com	Email Address:	
Responsible Official/Authorized Contact:		Invoice Contact:	
Name/Title: Leslie Hartz		Name/Title: William Scarpinato	
Mailing Address Line 1: 707 E. Main Stre	eet	Mailing Address Line 1: 5000 Dominion Boulevard	
Mailing Address Line 2:		Mailing Address Line 2: 2 NE	
City: Richmond State:	VA Zip Code: 23219	City: Glen Allen State: VA Zip Code:	2306
Phone No. (area code) 804-771-4468	Fax No. (area code)	Phone No. (area code) 804-273-3019 Fax No. (area code)	804-273-2601
nail Address: <u>leslie.hartz@dor</u>		Email Address: william.a.scarpinato@dom.com	
	APPLICATION IS B		
New Non-permittee	·	acility (permitted) Renewal with Modification	
	Renewal (
	FACILITY CLASSIFICATION AFTER	APPLICATION (Check Only One)	
☐ General ☑ Small ☐	Prohibitory Small	Synthetic Minor Title V	
	FACILITY (Plant Sit	e) INFORMATION	
Describe nature of (plant site) operation(s):	Facility ID No.: TBD		
Proposed new (greenfield) natural gas pipelin	e compressor station.		
Primary SIC/NAICS Code: 4922/486210		Current/Previous Air Permit No. N/A Expiration Date:	
Facility Coordinates: Latitude:	36.543874	Longitude: -77.505712	
Does this application contain confidential	***If yes, plea	se contact the DAQ Regional Office prior to submitting this application	1,***
data?	YES ☐ NO ☑ (See Instructi	ons)	
	PERSON OR FIRM THAT P	REPARED APPLICATION	
Person Name: Robert Sawyer		Firm Name: Environmental Resources Management	
Mailing Address Line 1: 75 Valley Stream	n Parkway	Mailing Address Line 2: Suite 200	
City: Malvern	State: PA	Zip Code: 19355 County: Chester	
Phone No. (area code) 410-266-0006	Fax No. (area code)	Email Address: robert.sawver@erm.com	_
	SIGNATURE OF RESPONSIBLE OF		NOTE TO STATE
Name (typed): Leslie Hartz		Title: VP Pipeline Construction	
X Signature(Blue Ink):	111 -	Date:	
	Hart	7/11/15	

Attach Additional Sheets As Necessary

FORMs A2, A3

EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

VISED 04/10/07	NCDENR/Division of Air Quality - Ap	•		A2
	EMISSION SOURCE LISTING: New, Mod	dified, Previously Unp	ermitted, Replaced, Deleted	
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE	
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION	
	Equipment To Be ADDED By This Applica			ALL CONTINUES
CT-01	Taurus 70-10802S Compressor Turbine	CT-01-SCR	Selective Catalyst Reduction	
-	Tadad to toode completed talbile	CT-01-OC	Oxidation Catalyst	
CT-02	Centaur 50-6200LS Compressor Turbine	CT-02-SCR	Selective Catalyst Reduction	
		CT-02-OC	Oxidation Catalyst	
CT-03	Centaur 40-4700S Compressor Turbine	CT-03-SCR	Selective Catalyst Reduction	
		CT-03-OC	Oxidation Catalyst	
EG-01	Caterpillar G3516 Emergency Generator	N/A		
TK-1	Accumulator Storage Tank	N/A	W-0000	
Fug-01	Fugitive Leaks - Blowdowns	N/A		
Fug-02	Fugitive Leaks - Piping	N/A		
	Existing Permitted Equipment	To Be MODIFIED B	y This Application	
N/A				
				107
<i>-</i>			7 775	
V-11128				
	Equipment To Be DI	ELETED By This App	plication	
N/A				
			THE STATE OF THE S	1000
 				
		1		
State Systems	112(r) APPLICA	BILITY INFORMA	TION	A 3
ls your facility subject to	40 CFR Part 68 "Prevention of Accidental Releases" - Se			7.0
	detail how your facility avoided applicability:		ct to regulation under this Subpart will be	
	equeous ammonia stored in TK-3 (exempt from peri			

Specify required RMP submittal date: ______ If submitted, RMP submittal date: _____

A. Have you already submitted a Risk Management Plan (RMP) to EPA Pursuant to 40 CFR Part 68.10 or Part 68.150?

B. Are you using administrative controls to subject your facility to a lesser 112(r) program standard?

If yes, please specify:

If your facility is Subject to 112(r), please complete the following:

Yes

Yes

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NCDI	ENR/Division of Air 0	Quality - Applica	ation for Air F	Permit to Con	struct/Operat	te		В
SSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	D:	CT-01	
Taurus 70-10802S Compressor Turbine				CONTROL D	EVICE ID NO	(S):	CT-01-SCR	and CT-01-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-01	
DESCRIBE IN DETAILTHE EMISSION SOURCE P Natural gas fired compressor turbine used to boost				e.				
TYPE OF EMISSION SOU	RCE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9 (ON THE FOLL	OWING PAG	ES):	
Coal,wood,oil, gas, other burner (Form B1)		Form B4)		Manufac	t. of chemicals	coatings/inks	(Form B7)	
☐ Int.combustion engine/generator (Form B2)	Coating/finishin		B5)	☐ Incinerat	on (Form B8)			
Liquid storage tanks (Form B3)	Storage silos/bi	ins (Form B6)		Other (Fo	orm B9)			
START CONSTRUCTION DATE: April 201	7 OPERATION DATE			DATE MANU			2016 or Later	
MANUFACTURER / MODEL NO.:	Solar Turbines Tau			OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAR	T?): Yes, KKKK NE	SHAP (SUBPAR	RT?): No	MACT (SUBP	ART?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC	C-FEB 25 MAR-	MAY 25 JU	N-AUG 25	SEP-NOV	25			
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC					<20	% OPACITY
CRITERIA A	IR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOL	IRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
PARTICULATE MATTER<2.5 MICRONS (PM25)		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
SULFUR DIOXIDE (SO2)		AP-42	0.33	1.43	0.33	1.43	0.33	1.43
NITROGEN OXIDES (NOx)		Mfg	1.91	8.35	3.41	14.95	1.91	8.35
RBON MONOXIDE (CO)		Mfg	2.99	13.08	7.33	32.11	2.99	13.08
LATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.18	0.78	0.33	1.46	0.18	0.78
LEAD								
OTHER								
HAZARDOUS	AIR POLLUTAN	T EMISSION	S INFORM	IATION FO	R THIS SC	DURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CON	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,3-Butadiene	106-99-0	AP-42	0.00002	0.0001	0.00003	0.0001	0.00002	0.0001
Acetaldehyde	75-07-0	AP-42	0.002	0.01	0.003	0.01	0.002	0.01
Acrolein	107-02-8	AP-42	0.0003	0.001	0.0005	0.002	0.0003	0.001
Benzene	71-43-2	AP-42	0.0005	0.002	0.001	0.004	0.0005	0.002
Ethylbenzene	100-41-4	AP-42	0.001	0.01	0.003	0.01	0.001	0.01
Formaldehyde	50-00-0	Mfg.	0.11	0.50	0.23	0.99	0.11	0.50
Naphthalene	91-20-3	AP-42	0.0001	0.0002	0.0001	0.0004	0.0001	0.0002
PAH		AP-42	0.0001	0.0004	0.0002	0.001	0.0001	0.0004
	POLLUTANT E					CE		22170
INDICA	ATE EXPECTED ACT	UAL EMISSION	S AFTER CO	NTROLS / LIN	ITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/c	day	lk.	o/yr
1,3-Butadiene	106-99-0	AP-42	0.00	0002	0.0	004	0	.15
Acetaldehyde	75-07-0	AP-42	0.0	002	0.	04	13	3.78
Acrolein	107-02-8	AP-42	0.0	003	0.	01	2	.20
Ammonia	7664-41-7	Mfg.		32	***	.68		63.20
Benzene	71-43-2	AP-42		005	0.			.13
Formaldehyde	50-00-0	Mfg.		11		72		2.03
Toluene	108-88-3	AP-42		005		12		1.78
ene	1330-20-7	AP-42	0.0	003	0.	06	22	2.05

chments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 12/01/01 NCDE	NR/Division of Air	Quality - Applica	tion for Air P	ermit to Cons	struct/Operat	е		В
IISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	O:	CT-01	
Taurus 70-10802S Compressor Turbine, conti	nued			CONTROL D	EVICE ID NO	(S):	CT-01-SCR a	nd CT-01-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-01	
DESCRIBE IN DETAILTHE EMISSION SOURCE PR Natural gas fired compressor turbine used to boost th	•			e.				
TYPE OF EMISSION SOUR	CE (CHECK AND	COMPLETE APP	ROPRIATE F	ORM B1-B9 C	N THE FOLL	OWING PAGI	ES):	
Coal,wood,oil, gas, other burner (Form B1)	Woodworking	(Form B4)		Manufac	t. of chemicals	s/coatings/ink	s (Form B7)	
☑ Int.combustion engine/generator (Form B2)	Coating/finish	ing/printing (Form	B5)	Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)	Storage silos/	bins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DATE: April 2017	OPERATION DAT	E: No	vember 2018	DATE MANU	JFACTURED:		2016 or Later	
MANUFACTURER / MODEL NO.:	Solar Turbines Ta			OP. SCHEDU	ILE: 24 HR/DA	Y 7 DAY/W	K 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART	?): Yes, KKKK NI	SHAP (SUBPAR	T?): No I	MACT (SUBP	ART?): No		·	_
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-1	EB 25 MAR-	MAY 25 JUI	N-AUG 25	SEP-NOV	25	_		
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STACK					<20	% OPACITY
CRITERIA AI	R POLLUTAN	EMISSIONS	INFORMA	TION FOR	THIS SOUI	RCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM2.5)		Mfg						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See	Form B, Page	e 1, for criteri	a pollutant to	otals for this s	ource
CARBON MONOXIDE (CO)		Mfg						
LATILE ORGANIC COMPOUNDS (VOC)		Mfg						
-cÉAD								
OTHER								
HAZARDOUS	AIR POLLUTA	NT EMISSION	S INFORM	ATION FO	R THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	- 1
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Propylene oxide	75-56-9	AP-42	0.001	0.005	0.002	0.01	0.001	0.005
Toluene	108-88-3	AP-42	0.005	0.02	0.010	0.04	0.005	0.02
Xylene	1330-20-7	AP-42	0.003	0.01	0.005	0.02	0.003	0.01
TOXIC AIR	POLLUTANT E	EMISSIONS IN	IFORMATI	ON FOR TI	HIS SOUR	CE		
INDICAT	E EXPECTED AC	TUAL EMISSIONS	S AFTER CO	NTROLS / LIN	IITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/c	day	lb	/yr
Attachments: (1) emissions calculations and supporting documents					3, Page 1, for	TAP totals fo	or this source	

bese are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of	Air Qual	ity - Application for Air Perr	mit to Co	onstruct/Operate			B2
EMISSION SOURCE DESCRIPTION	Taurus 70-10802S Comp	ressor Tu	urbine	EMISS	ION SOURCE ID I	10:	CT-01	
			_	CONTR	ROL DEVICE ID N	O(S):	CT-01-SCR ar	d CT-01-OC
OPERATING SCENARIO 1 of 1				EMISS	ION POINT (STAC	K) ID NO(S):	EP-01	
CHECK ALL THAT APPLY	☐ EMERGENCY		SPACE HEAT		ELECTRICAL GE	NERATION		
	PEAK SHAVER	1	OTHER (DESCRIBE):	Natural	Gas Compressor	Turbine		
GENERATOR OUTPUT (KW):	N/A	ANTICIPA	ATED ACTUAL HOURS OF	OPERAT	TON AS PEAK SH	AVER (HRS/	YR): N/A	
ENGINE OUTPUT (HP): 11,882	2							We.
TYPE ICE: GASOLINE ENGINE OTHER (DESCRIBE)					GREATER THAN	600 HP	DUAL FUE	L ENGINE
ENGINE TYPE RICH BUR			ırbine		(complete below)			
EMISSION REDUCTION MODIFICAT			RETARD	NOTINE	CHAMBER COME	NOTON		
OR STATIONARY GAS TUR		TIVILITO					OTHER_	
FUEL INATURAL GAS		ENGINE	NATURAL GAS PIPELINE O					
OTHER (DESCRIBE):	LI OIL	ENGINE	4-CYCLE RICH		☐ 4-CYCLE ☐ OTHER (□		TURBINE	
CYCLE: COGENERATION	☑ SIMPLE	CONTRO			CATIONS (DESCR			_
□ REGENERATIVE			ECTIVE CATALYTIC REDU				IC REDUCTION	. 🖸
_			BURN AND PRECOMBUSTION			UNCONTRO		
	LEAN-PREMIX	0227.111	and oxidation catalyst	011 011/4	MIDER D	ONCONTRO	OLLED L	
Salar postulation of the salar		AGE (I	NCLUDE STARTUP/BA	ACKUF	P FUEL)	\$ 11 BH		
						PEOLIESTER	CARACITY	
FUEL TYPE	UNITS	MAXIMUM DESIGN			REQUESTED CAPACITY LIMITATION (UNIT/HR)			
Natural Gas	MMBtu		96.00			N/	Α	
				7				
	FUEL CHARACTE	RISTIC	S (COMPLETE ALL TH	IAT AR	E APPLICABL	E)		
						SULFUR	CONTENT	
FUEL TYPE	BTU/UNIT		UNITS			(% BY W	/EIGHT)	
Natural Gas	1,020		scf			0.00	005	
	MANUFACTURER	'S SPE	CIFIC EMISSION FAC	TORS ((IF AVAILABLE	Ξ)		
POLLUTANT	NOX	(CO PM	Ī	PM10	VOC	Fo	rmaldehyde
EMISSION FACTOR LB/UNIT	3.20	5	.30 1.92		1.92	0.30)	0.00288
UNIT	hour	h	our hour		hour	hou	r	MMBtu
DESCRIBE METHODS TO MINIM	IZE VISIBI E EMISSION	IS DITE	ING IDLING OR LOW LC	AD OB	EDATIONS:			
DESCRIBE WETTOOD TO WINNIN	IZE VIGIBLE LIVIGGIO	NO DUN	ING IDLING, OR LOW LC	AD OF	ERATIONS.			
}								
COMMENTS:								
COMMENTS.								
								l

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

EVISED 12/01/01	ADIAISION OF WILL GRA	ality - Application for Air i	rermit to Co	nstruct/Operate			<u> </u>
AS REQUIRED BY 15A NCAC 2Q .0112, THIS	FORM MUST BE SE	ALED BY A PROFESSIO	NAL ENGIN	NER (P.E.) LICEN	SED IN N	IORTH CAROLI	NA.
ONTROL DEVICE ID NO: CT-01-SCR and CT-01-OC	CONTROLS E	MISSIONS FROM WHICH	HEMISSION	SOURCE ID NO(S	3):	CT-01	
MISSION POINT (STACK) ID NO(S): EP-01	POSITION IN	SERIES OF CONTROLS	1	NO.	OF	רואט	'S 1
MANUFACTURER: TBD	МС	DDEL NO:					
MANUFACTURE DATE: TBD	PR	OPOSED OPERATION DA	ATE: Nover	mber 2018			
OPERATING SCENARIO:	PR	OPOSED CONSTRUCTION	ON DATE:	April 2017			
1 of 1		·					
TYPE: AFTERBURNER REGENERATIV	'E THERMAL OXIDA	TION	RECL	JPERATIVE THER	MAL OXI	IDATION	 _
X CATALYTIC OX	CIDATION						
EXPECTED LIFE OF CATALYST (YRS): TBD	METHOD OF	DETECTING WHEN CATA	ALYST NEED	OS REPLACMENT	:	TBD	-
CATALYST MASKING AGENT IN AIR STREAM: HALOG		PHOSPHOROUS COM	MPOUND	HEAVY METAL			
	LFUR COMPOUND	OTHER		NONE			
	T VOL (FT³): TB	D VELOCITY TH	HROUGH CA	TALYST (FPS):	TBD		
SCFM THROUGH CATALYST:							
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION 1	O OTHER CONTRO	DL DEVICES AND SOURC	ES, AND AT	TTACH DIAGRAM	OF SYS	TEM:	
Selective Catalyst Reduction and Oxidation Catalyst	110						
POLLUTANT(S) COLLECTED:	NO _x			VOC	_	Formaldehyde	_
BEFORE CONTROL EMISSION RATE (LB/HR):					_		_
CAPTURE EFFICIENCY:		%	%		_%		_ %
CONTROL DEVICE EFFICIENCY:	44	%80	%	50	_%	50	_%
OVERALL SYSTEM EFFICIENCY:		%	%		_%		%
EFFICIENCY DETERMINATION CODE:					_		_
OTAL EMISSION RATE (LB/HR) :							
RESSURE DROP (IN. H2O): MIN MAX		OUTLET TEMPERATI	JRE (°F):	MIN		MAX	
NLET TEMPERATURE (°F): MIN MAX		RESIDENCE TIME (SE	ECONDS):				
NLET AIR FLOW RATE (ACFM): (SCFM):		COMBUSTION TEMPI	ERATURE (°	F):			
COMBUSTION CHAMBER VOLUME (FT3):		INLET MOISTURE CO	NTENT (%):				
% EXCESS AIR:		CONCENTRATION (p)		INLET		OUTLE	Т
AUXILIARY FUEL USED:		TOTAL MAXIMUM FIR	ING RATE (I	MILLION BTU/HR)	:		
MAXIMUM ANNUAL FUEL USE: UNITS:		MAXIMUM HOURLY F			UNITS:		
ACTUAL ANNUAL FUEL USE: UNITS:		ACTUAL HOURLY FU			UNITS:		
DESCRIBE METHOD USED TO INCREASE MIXING:							
DESCRIBE METHOD TO INSURE ADEQUATE START-UP	TEMPERATURE:						
DESCRIBE TEMPERATURE MONITORING DEVICES AND	PROCEDURES:						
STACK TESTING PORTS: G NO G YES (INLET ANI	O OUTLET)				•••		
DESCRIBE MAINTENANCE PROCEDURES:	30.12.7						<u>.</u>
DECODIRE ANY ALIVINARY ATTENDANCE OF THE PROPERTY OF THE PROPE	TO THE SOUR	0.07514					
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED IN	ITO THE CONTROL	SYSTEM:					
TTACH A DIAGRAM OF THE RELATIONSHIP OF THE CO	NTROL DEVICE TO	ITS EMISSION SOURCE	(S):				

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NCDE	NR/Division of Air C	uality - Applica	ation for Air F	ermit to Con	struct/Operat	e		В
ISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	D:	CT-02	
Centaur 50-6200LS Compressor Turbine				CONTROL D	EVICE ID NO	(S):	CT-02-SCR a	and CT-02-OC
OPERATING SCENARIO 1 of 1					OINT (STACK	,	EP-02	
DESCRIBE IN DETAILTHE EMISSION SOURCE P	ROCESS (ATTACH F	LOW DIAGRAM	/I):					***
Natural gas fired compressor turbine used to boost t	•		•	e.				
TYPE OF EMISSION SOUR	RCE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9 (N THE FOLL	OWING PAGE	ES):	
Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking (F	Form B4)		Manufact	of chemicals	/coatings/inks	(Form B7)	
Int.combustion engine/generator (Form B2)	Coating/finishing		B5)	_	on (Form B8)			
Liquid storage tanks (Form B3)	Storage silos/bir			Other (Fo				
START CONSTRUCTION DATE: April 2017	OPERATION DATE			DATE MANU			2016 or Later	•
MANUFACTURER / MODEL NO.:	Solar Turbines Cent			OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAR	T?): Yes, KKKK NE	SHAP (SUBPAF	RT?): No	MACT (SUBP	ART?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC		MAY 25 JU	IN-AUG 25	SEP-NOV	25			
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC					<20	% OPACITY
CRITERIA A	IR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOL	IRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	1.20	5.26	1.20	5.26	1.20	5.26
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1.20	5.26	1.20	5.26	1.20	5.26
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42	1.20	5.26	1.20	5.26	1.20	5.26
SULFUR DIOXIDE (SO2)		AP-42	0.20	0.89	0.20	0.894	0.20	0.89
NITROGEN OXIDES (NOx)		Mfg	1.19	5.20	2.13	9.31	1.19	5.20
RBON MONOXIDE (CO)		Mfg	1.87	8.19	4.57	20.04	1.87	8.19
LATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.11	0.48	0.20	0.89	0.11	0.48
LEAD								
OTHER HAZABBOUS	AID DOLL LITTE	TEMPONO	IO INICADE	IATION	D TIPO CO	WDOT		
HAZAKDOUS	AIR POLLUTAN				K 1115 50			
		SOURCE OF		D ACTUAL		1	_ EMSSIONS	
		EMISSION	(AFTER CONTI		(BEFORE CONT			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	100.000	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,3-Butadiene	106-99-0	AP-42	0.00001	0.00005	0.00002	0.0001	0.00001	0.00005
Acetaldehyde	75-07-0	AP-42	0.001	0.005	0.002	0.01	0.001	0.005
Acrolein	107-02-8	AP-42	0.0002	0.001	0.0003	0.001	0.0002	0.001
Benzene	71-43-2	AP-42	0.0003	0.001	0.001	0.003	0.0003	0.001
Ethylbenzene	100-41-4	AP-42	0.0008	0.004	0.002	0.01	0.001	0.004
Formaldehyde	50-00-0	Mfg.	0.08	0.33	0.15	0.66	0.08	0.33
Naphthalene	91-20-3	AP-42	0.00003	0.0002	0.0001	0.0003	0.00003	0.0002
PAH TOYIC AIR	POLITANTE	AP-42	0.0001	0.0003	0.0001	0.001	0.0001	0.0003
	POLLUTANT E			The second second		CE		
	TE EXPECTED ACT							
TOXIC AIR POLLUTANT AND CAS NO.	100.00.0	EF SOURCE		/hr		day		o/yr
1,3-Butadiene	106-99-0	AP-42	0.00		0.0			.10
Acetaldehyde	75-07-0	AP-42	0.0	-		03		.23
Acrolein	107-02-8	AP-42	0.0		0.0			.48
Ammonia	7664-41-7	Mfg.		82	19.			35.68
Benzene	71-43-2	AP-42	0.0		0.0			.77
Formaldehyde	50-00-0	Mfg.	0.			82		4.78
Toluene	108-88-3	AP-42	0.0			12		1.78
ene	1330-20-7	AP-42	0.0	002	0.0	06	22	2.05

achments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

NCDENR/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ate		В
Coal, wood, oil, gas, other burner (Form B1)							
le			CONTROL D	EVICE ID NO	(S):	CT-02-SCR ar	nd CT-02-OC
SSION SOURCE DESCRIPTION: Centaur 50-4200LS Compressor Turbine							
			ne.				
SOURCE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9	ON THE FOLI	OWING PAG	ES):	
☐ Woodworking (F	orm B4)		Manufac	t. of chemicals	s/coatings/inks	(Form B7)	
Coating/finishing	/printing (Form I	B5)	Incinerat	ion (Form B8)			
Storage silos/bin	s (Form B6)		Other (F	orm B9)			
2017 OPERATION DATE:							
			OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YR	
BPART?): Yes, KKKK NE	SHAP (SUBPA	RT?): No	MACT (SUBF	ART?): No			
DEC-FEB 25 MAR-I	MAY 25 JL	JN-AUG 25	SEP-NOV	25	•		
						<20	% OPACITY
IA AIR POLLUTANT	EMISSIONS	INFORMA	ATION FOR	THIS SOL	JRCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTE	ROLS / LIMITS)
	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
	Mfg/AP-42						
	Mfg						
	Mfg						
	AP-42						
	Mfg	See	Form B, Pag	e 1, for criteri	a pollutant to	tals for this so	ource
	Mfg						
	Mfg						
			5711				
OUS AIR POLLUTAN	T EMISSION	IS INFORI	NATION FO	OR THIS SO	DURCE		
-	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	TROLS / L!MITS)	(AFTER CONTR	ROLS / LIMITS)
О.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
75-56-9	AP-42	0.001	0.003	0.002	0.01	0.001	0.003
108-88-3	AP-42	0.003	0.02	0.01	0.03	0.003	0.02
1330-20-7	AP-42	0.002	0.01	0.003	0.01	0.002	0.01
AIR POLLUTANT E	MISSIONS II	VFORMAT	ION FOR T	HIS SOUR	CE		
IDICATE EXPECTED ACT	UAL EMISSION	S AFTER CC	NTROLS / LII	MITATIONS			
	EF SOURCE	lb	/hr	lb/e	dav	lb/	vr
			See Form E	3, Page 1, for	TAP totals fo	r this source	
	CE PROCESS (ATTACH Reposit the pressure of natural specific process) (ATTACH Reposit the pressure of natural specific process (CHECK AND CONTROL Woodworking (For Coating/finishing Storage silos/bin 2017 OPERATION DATE: Solar Turbines Centa BPART?): Yes, KKKK NEDEC-FEB 25 MAR-IN: 8,760 IA AIR POLLUTANT DUS AIR POLLUTANT AIR POLLUTANT AIR POLLUTANT E	SOURCE (CHECK AND COMPLETE APF Woodworking (Form B4) Coating/finishing/printing (Form B6) Storage silos/bins (Form B6) OPERATION DATE: No. Solar Turbines Centaur 50-6200LS BPART?): Yes, KKKK NESHAP (SUBPAF DEC-FEB 25 MAR-MAY 25 JUN: 8,760 VISIBLE STACT OF EMISSION FACTOR Mfg/AP-42 Mfg Mfg Mfg Mfg Mfg Mfg Mfg Mfg Mfg Mfg Mfg Mfg	SOURCE (CHECK AND COMPLETE APPROPRIATE FOR Woodworking (Form B4) Coating/finishing/printing (Form B5) Storage silos/bins (Form B6) Solar Turbines Centaur 50-6200LS EXPECTED BPART?): Yes, KKKK NESHAP (SUBPART?): No DEC-FEB 25 MAR-MAY 25 JUN-AUG 25 N: 8,760 VISIBLE STACK EMISSION INFORM/ SOURCE OF EMISSION (AFTER CONTACT AP-42 Mfg Mfg Mfg Mfg Mfg Mfg Mfg Mfg	EMISSION S CONTROL E EMISSION F CODE PROCESS (ATTACH FLOW DIAGRAM): coost the pressure of natural gas in a transmission pipeline. SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9	EMISSION SOURCE ID NO EMISSION POINT (STACE CE PROCESS (ATTACH FLOW DIAGRAM): DOOST the pressure of natural gas in a transmission pipeline. SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLL Woodworking (Form B4) Coating/finishing/printing (Form B5) Slorage silos/bins (Form B6) Other (Form B9) 2017 OPERATION DATE: November 2018 DATE MANUFACTURED: Solar Turbines Centaur 50-6200LS EXPECTED OP. SCHEDULE: 24 HR/DA SPART?): Yes, KKKK NESHAP (SUBPART?): No DEC-FEB 25 MAR-MAY 25 JUN-AUG 25 SEP-NOV 25 N: 8,760 VISIBLE STACK EMISSIONS UNDER NORMAL OPER/ IA AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOU EMISSION FACTOR BAP-42 Mfg Mfg AP-42 Mfg Mfg AP-42 Mfg Mfg DUS AIR POLLUTANT EMISSIONS INFORMATION FOR THIS SOU 103-88-3 AP-42 10-003 103-88-3 AP-42 10-003 103-88-3 AP-42 10-003 100-20 10	EMISSION SOURCE ID NO: CONTROL DEVICE ID NO(S): EMISSION POINT (STACK) ID NO(S): CCE PROCESS (ATTACH FLOW DIAGRAM): boost the pressure of natural gas in a transmission pipeline. SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGE AND COMPLETE APPROPRIATE APPROPRIATE AND COMPLETE APPROPRIATE AND COMPLETE APPROPRIATE APPROPRI	EMISSION SOURCE ID NO: CT-02 CONTROL DEVICE ID NO(S): CT-02-SCR ar EMISSION POINT (STACK) ID NO(S): E7-02 CE PROCESS (ATTACH FLOW DIAGRAM): post the pressure of natural gas in a transmission pipeline. SOURCE (CHECK AND COMPLETE APPROPRIATE FORM B1-B9 ON THE FOLLOWING PAGES):

chments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of Ai	ir Quali	ty - Application for Air Pern	nit to Constr	ruct/Operate			B2	
EMISSION SOURCE DESCRIPTION:	Centaur 50-6200LS Compre	essor T	urbine	EMISSION	SOURCE ID NO	0:	CT-02		
EMISSION SOURCE DESCRIPTION: Centaur 50-6200LS Compressor Turbine EMISSION SOURCE ID NO: CT-02 CONTROL DEVICE ID NO(S): CT-02-SCR and CT-02-OC DEFERATING SCENARIO 1 of 1 EMISSION POINT (STACK) ID NO(S): EP-02 EMISSION POINT (STACK) ID NO(S):									
OPERATING SCENARIO 1 of 1	- "			EMISSION	POINT (STACK	() ID NO(S):	EP-02		
CHECK ALL THAT APPLY	☐ EMERGENCY		SPACE HEAT	☐ ELE	CTRICAL GEN	ERATION			
	PEAK SHAVER	7	OTHER (DESCRIBE):	Natural Gas	Compressor T	urbine			
GENERATOR OUTPUT (KW):	N/A AN	NTICIPA	ATED ACTUAL HOURS OF C	PERATION	AS PEAK SHA	VER (HRS/	YR): N/A		
ENGINE OUTPUT (HP): 6,642									
TYPE ICE: GASOLINE ENGINE	☐ DIESEL ENGIN	NE UP 1	TO 600 HP DIESEL I	ENGINE GR	EATER THAN	600 HP	DUAL FUEL	ENGINE	
☑ OTHER (DESCRIBE)	: Natural Gas Compres	ssor Tu	ırbine	(con	nplete below)				
ENGINE TYPE RICH BUR	N 🖸 LEAN BURN								
EMISSION REDUCTION MODIFICAT	TONS INJECTION TIME	MING R	ETARD	NITION CHA	AMBER COMBI	USTION	OTHER		
OR STATIONARY GAS TUR	BINE (complete below)		NATURAL GAS PIPELINE C	OMPRESSO	OR OR TURBIN	IE (complete	below)		
FUEL NATURAL GAS	□ OIL EN	IGINE '	TYPE: 2-CYCLE LEAN	BURN	4-CYCLE L	EAN 🖸	TURBINE		
OTHER (DESCRIBE):			☐ 4-CYCLE RICH	BURN	OTHER (DE	ESCRIBE): _			
CYCLE: COGENERATION	☑ SIMPLE CO	ONTRO	LS: COMBUSTION						
☐ REGENERATIVE	☐ COMBINED NO	ONSEL	ECTIVE CATALYTIC REDUC	CTION 🗆	SELECTIVE	E CATALYTI	C REDUCTION E	2	
CONTROLS:	TEAM INJECTION C	LEAN E	BURN AND PRECOMBUSTIC	ON CHAMBE	R 🗆	UNCONTRO	DLLED 🗆		
☐ UNCONTROLLED ☑	LEAN-PREMIX		and oxidation catalyst						
	FUEL USA	GE (I	NCLUDE STARTUP/BA	ACKUP FL	JEL)			Edhille	
			MAXIMUM DESIGN		R	EQUESTED	CAPACITY		
FUEL TYPE	UNITS	UNITS CAPACITY (LIMITATION (UNIT/HR)				
Natural Gas	MMBtu		60.0			N//	4		
						-			
	FUEL CHARACTERI	STICS	S (COMPLETE ALL TH	AT ARE A	PPLICABLE	Ξ)	19/2 18-14		
						SULFUR	CONTENT		
FUEL TYPE	BTU/UNIT		UNITS			(% BY W	EIGHT)		
Natural Gas	1,020		scf			0.00	05		
	MANUFACTURER'S	SPE	CIFIC EMISSION FACT	TORS (IF	AVAILABLE)			
POLLUTANT	NOX	(O PM		PM10	VOC	Form	aldehyde	
EMISSION FACTOR LB/UNIT	1.98	3	.30 1.20		1.20	0.19	0.0	00288	
UNIT	hour	h	our hour		hour	hou	г М	MBtu	
DESCRIBE METHODS TO MINIM	UZE VICIDI E EMICCIONO	. DUD	INC IDLING OR LOW LO	AD ODED	ATIONIC:				
DESCRIBE METHODS TO MINIM	IIZE VISIBLE EIVIISSIONS	ט טטאו	ING IDLING, OR LOW LO	AD OPERA	ATIONS:				
;									
COMMENTO									
COMMENTS:									

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 12/01/01 NCDENR/Divi	sion of Air Qual	ity - Applic	ation for Air Pe	ermit to Co	nstruct/Operate			<u>C3</u>
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORI	M MUST BE SEA	LED BY A	PROFESSION	AL ENGINI	NER (P.E.) LICEN	SED IN	NORTH CAROLI	NA.
CONTROL DEVICE ID NO: CT-02-SCR and CT-02-OC	CONTROLS EN	VISSIONS	FROM WHICH	EMISSION	SOURCE ID NO(S	S):	CT-02	
MISSION POINT (STACK) ID NO(S): EP-02	POSITION IN S	ERIES OF	CONTROLS	1	NO.	OF	UNIT	'S 1
MANUFACTURER: TBD	мо	DEL NO:						
MANUFACTURE DATE: TBD	PRO	OPOSED O	PERATION DA	TE: Nover	nber 2018			
OPERATING SCENARIO:	PRO	POSED C	ONSTRUCTION	DATE:	April 2017			
1 of 1		16916-3-359		M700				
TYPE: AFTERBURNER REGENERATIVE TH	IERMAL OXIDAT	ION		RECL	PERATIVE THER	MAL OX	(IDATION	
X CATALYTIC OXIDAT	ION							
EXPECTED LIFE OF CATALYST (YRS): TBD	T	ETECTING	WHEN CATA	YST NEED	S REPLACMENT	:	TBD	
CATALYST MASKING AGENT IN AIR STREAM: HALOGEN	SILICONE	PHOSPI	HOROUS COM	POUND	HEAVY METAL			
	R COMPOUND	(OTHER		NONE			
TYPE OF CATALYST: TBD CATALYST VO	L (FT³): TBD)	VELOCITY THE	ROUGH CA	TALYST (FPS):	TBD		
SCFM THROUGH CATALYST:		,.						
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO O	THER CONTRO	L DEVICES	AND SOURCE	S, AND AT	TACH DIAGRAM	OF SYS	STEM:	
Selective Catalyst Reduction and Oxidation Catalyst								
POLLUTANT(S) COLLECTED:	NO _x		CO	_	VOC	_	Formaldehyde	_
BEFORE CONTROL EMISSION RATE (LB/HR):						_		_
CAPTURE EFFICIENCY:		%		%		_%		%
CONTROL DEVICE EFFICIENCY:	44	- %	80	%	50	_%	50	%
OVERALL SYSTEM EFFICIENCY:		%		%		_%		%
FFICIENCY DETERMINATION CODE:						_		_
OTAL EMISSION RATE (LB/HR) :		_				_		_
RESSURE DROP (IN. H2O): MIN MAX		OUTLET	TEMPERATUI	RE (°F):	MIN		MAX	
NLET TEMPERATURE (°F): MIN MAX			NCE TIME (SE			·		
NLET AIR FLOW RATE (ACFM): (SCFM):		+	STION TEMPE					
COMBUSTION CHAMBER VOLUME (FT³):		+	OISTURE CON		. ,			
6 EXCESS AIR:		_	NTRATION (pp		INLET	 	OUTLE	T .
		+						
AUXILIARY FUEL USED: MAXIMUM ANNUAL FUEL USE: UNITS:					MILLION BTU/HR)		2.	· · ·
		1	JM HOURLY FU			UNITS		
CTUAL ANNUAL FUEL USE: UNITS:		ACTUAL	HOURLY FUE	L USE:		UNITS	D.:	
DESCRIBE METHOD USED TO INCREASE MIXING:								
DESCRIBE METHOD TO INSURE ADEQUATE START-UP TEM	DEDATI IDE:							
ESCRIBE METHOD TO INSORE ADEQUATE START-OF TEM	FERATORE.							
DESCRIBE TEMPERATURE MONITORING DEVICES AND PRO	OCEDURES:	****						,
STACK TESTING PORTS: GNO GYES (INLET AND OU	ITLET)						-	
DESCRIBE MAINTENANCE PROCEDURES:								
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO	THE CONTROL :	SYSTEM:						
	NOT SECTION	120 E. V.C.						
TTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTR	KUL DEVICE TO	HS EMISS	SOURCE(5):				

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NCDI	ENR/Division of Air Q	luality - Applica	tion for Air P	ermit to Cons	truct/Operate	•		l B
ISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	D:	CT-03	
Centaur 40-4700S Compressor Turbine				CONTROL D	EVICE ID NO	(S):	CT-03-SCR a	and CT-03-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-03	
DESCRIBE IN DETAILTHE EMISSION SOURCE PR	OCESS (ATTACH FL	OW DIAGRAM):	:					
Natural gas fired compressor turbine used to boost the	ne pressure of natural	gas in a transmi	ssion pipeline	١,				
TYPE OF EMISSION SOU	RCE (CHECK AND C	OMPLETE APP	ROPRIATE FO	ORM B1-B9 O	N THE FOLL	OWING PAGE	S):	
Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking (Fo	*		Manufac	t. of chemicals	coatings/inks	(Form B7)	
Int.combustion engine/generator (Form B2)	Coating/finishing/		15)	_	on (Form B8)			
Liquid storage tanks (Form B3)	Storage silos/bins	s (Form B6)		Other (Fo	om B9)			
	OPERATION DATE:		vember 2018	DATE MANU	FACTURED:		2016 or Later	
MANUFACTURER / MODEL NO.:	Solar Turbines Centa			OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART				MACT (SUBPA	'			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-			I-AUG 25	SEP-NOV 2				
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC					<20	% OPACITY
CRITERIA A	IR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	1.02	4.47	1.02	4.47	1.02	4.47
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1.02	4.47	1.02	4.47	1.02	4.47
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42	1.02	4.47	1.02	4.47	1.02	4.47
SULFUR DIOXIDE (SO2)		AP-42	0.17	0.76	0.17	0.76	0.17	0.76
NITROGEN OXIDES (NOX)		Mfg	1.01	4.44	5.02	22.01	1.01	4.44
CARBON MONOXIDE (CO)		Mfg	1.66	7.29	6.92	30.31	1.66	7.29
LATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.09	0.41	0.17	0.76	0.09	0.41
LEAD								
OTHER	AID DOLLUTAN	T = 14/20/04	0 14/50014	ATION SO	B 7/1/0 00	LIDOE		
HAZARDOUS	AIR POLLUTAN				R THIS SU			
		SOURCE OF		D ACTUAL		1	L EMSSIONS	
		EMISSION		ROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,3-Butadiene	106-99-0	AP-42	0.00001	0.00004	0.00002	0.0001	0.00001	0.00004
Acetaldehyde	75-07-0	AP-42	0.001	0.004	0.002	0.01	0.001	0.004
Acrolein	107-02-8	AP-42	0.0001	0.0006	0.0003	0.001	0.0001	0.001
Benzene	71-43-2	AP-42	0.0003	0.001	0.001	0.002	0.0003	0.001
Ethylbenzene	100-41-4	AP-42	0.001	0.003	0.001	0.01	0.001	0.003
Formaldehyde Naphthalene	50-00-0	Mfg.	0.06	0.27	0.12	0.54	0.06	0.27
PAH	91-20-3	AP-42	0.00003	0.0001	0.0001	0.0002	0.00003	0.0001
	POLLUTANT EN	AP-42	0.00005	0.0002	0.0001	0.000	0.0000	0.0002
	TE EXPECTED ACTU		The second secon			JE		
	TE EXPECTED ACTO							,
TOXIC AIR POLLUTANT AND CAS NO.	400.00.0	EF SOURCE		/hr	lb/d			o/yr
1,3-Butadiene	106-99-0	AP-42		0001	0.0			.08
Accelain	75-07-0	AP-42		009	0.0			.51
Acrolein	107-02-8	AP-42		001	0.0			.20
Ammonia Benzene	7664-41-7	Mfg.		69	16.		-	44.40
Formaldehyde	71-43-2	AP-42		003	0.0		-	.25
Toluene	50-00-0	Mfg.		062	1.4			1.00
Xylene	108-88-3	AP-42		003	0.0			1.42
Аугоно	1000-20-7	AP-42	0.0	001	0.0	JJ	12	2.02

chments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how see are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NCI	DENR/Division of Air	r Quality - Appli	cation for Ai	r Permit to Co	onstruct/Opera	ate		B
EMISSION SOURCE DESCRIPTION: Centaur 40-4700S Compressor Turbine								
Centaur 40-4700S Compressor Turbine				CONTROL D	EVICE ID NO	(S):	CT-03-SCR a	ind CT-03-OC
OPERATING SCENARIO 1 of 1				EMISSION F	OINT (STACK) ID NO(S):	EP-03	
				ipeline.				
TYPE OF EMISSION SO	URCE (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
Coal,wood,oil, gas, other burner (Form B1)								
☑ Int.combustion engine/generator (Form B2) ☐ Liquid storage tanks (Form B3)	_	-, -,	n B5)					
START CONSTRUCTION DAT April 2017								
MANUFACTURER / MODEL NO.:	Solar Turbines Cer	ntaur 40-4700S	EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	< 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBF	PART?): Yes, KKKK	NESHAP (SUB	PART?): No	MACT (S	UBPART?): No)		
PERCENTAGE ANNUAL THROUGHPUT (%): I	DEC-FEB 25 M/	AR-MAY 25	JUN-AUG	25 SEP-N	OV 25			
EXPECTED ANNUAL HOURS OF OPERATION							<20	% OPACITY
CRITERIA	AIR POLLUTAN	T EMISSION	S INFORM	IATION FO	R THIS SOL	JRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	TROLS / LIMITS)	(BEFORE CONTI	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See	Form B, Page	e 1, for criteria	pollutant to	tals for this s	ource
RBON MONOXIDE (CO)		Mfg	1			•		
LATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD		1						
OTHER		1						
HAZARDOU	S AIR POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS SC	DURCE		
		SOURCE OF		D ACTUAL			L EMSSIONS	
		EMISSION	1	TROLS / LIMITS)	(BEFORE CONTR		i	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Propylene oxide	75-56-9	AP-42	0.001	0.003	0.001	0.01	0.001	0.003
Toluene	108-88-3	AP-42	0.003	0.01	0.01	0.02	0.003	0.01
Xylene	1330-20-7	AP-42	0.001	0.01	0.003	0.01	0.001	0.01
								
TOXIC A	IR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOUR	CE		2556777
	CATE EXPECTED AC				The second second			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE)/hr	lb/d	av	lh	
							10.	.,,.
				See Form B	3, Page 1, for 1	ΓAP totals fo	r this source	
chments: (1) emissions calculations and supporting now these are monitored and with what frequency; and (documentation; (2) indica (3) describe any monitori	ate all requested si ing devices, gauge	late and federal s, or test ports	I enforceable per for this source.	rmit limits (e.g. ho	ours of operatio	n, emission rate	s) and describe

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of	Air Qual	ity - Application for Air P	ermit to C	onstruct/Operate				B2
EMISSION SOURCE DESCRIPTION:	Centaur 40-4700S Compr	essor Tu	rbine	EMIS	SION SOURCE ID I	NO:	CT-03		
				CONT	ROL DEVICE ID N	O(S):	CT-03-SCR	and C	T-03-OC
OPERATING SCENARIO 1 of 1				EMIS	SION POINT (STAC	K) ID NO(S):	EP-03		
CHECK ALL THAT APPLY	☐ EMERGENCY		SPACE HEAT		ELECTRICAL GE	NERATION			
	PEAK SHAVER	7	OTHER (DESCRIBE):	Natura	al Gas Compressor	Turbine			
EMISSION SOURCE DESCRIPTION Centeur 40-4700S Compressor Turbina EMISSION SOURCE ID NO; CT-03 SCR and CT-03-OC CONTROL DEVOE ID NO; CT-03-SCR and CT-03-SCR									
ENGINE OUTPUT (HP): 5,023									
The state of the s				L ENGIN		1 600 HP	☐ DUAL F	UEL E	NGINE
	•	CSSUI II	ii Dii le		(complete below)				
	_	IMING R	ETARD PR	EIGNITIOI	N CHAMBER COM	BUSTION	☐ OTHE	R	
OR STATIONARY GAS TUR	BINE (complete below)		NATURAL GAS PIPELIN	E COMPR	ESSOR OR TURB	INE (complete	below)	4154	
FUEL NATURAL GAS	□ OIL E	NGINE	TYPE: 2-CYCLE LE	AN BURN	4-CYCLE	LEAN 🖸	TURBINE		
OTHER (DESCRIBE):			☐ 4-CYCLE RI	CH BURN	OTHER (DESCRIBE): _			
CYCLE: COGENERATION	☑ SIMPLE C	ONTRO	LS: COMBUSTION	N MODIF	CATIONS (DESCR	RIBE):		_	
☐ REGENERATIVE	☐ COMBINED	NONSEL	ECTIVE CATALYTIC RE	DUCTION	☐ SELECTIV	/E CATALYTI	IC REDUCTI	ON 🗹	
CONTROLS:	TEAM INJECTION	CLEAN E	BURN AND PRECOMBUS	TION CH	AMBER	UNCONTRO			
☐ UNCONTROLLED ☑	LEAN-PREMIX		and oxidation cataly	st	-				
	FUEL US	AGE (I	NCLUDE STARTUP	BACKU	P FUEL)	and and the last of the	المعالي		
			MAXIMUM DESI	3N		REQUESTED	CAPACITY		
FUEL TYPE	UNITS		CAPACITY (UNIT)	HR)		LIMITATION	(UNIT/HR)		
Natural Gas	MMBtu		51.0			N/A	A		
	FUEL CHARACTER	RISTIC	S (COMPLETE ALL	THAT A	RE APPLICABI	.E)			
						SULFUR	CONTENT		
FUEL TYPE	BTU/UNIT		UNITS			(% BY W	EIGHT)		
Natural Gas	1,020		scf			0.00	05		
	MANUFACTURER	'S SPE	CIFIC EMISSION FA	CTORS	(IF AVAILABL	E)		JE B	
POLLUTANT					·		:	Forma	ldehyde
EMISSION FACTOR LB/UNIT	4.70	5	.70 1.0	2	1.02	0.16			
UNIT	hour	h							
DESCRIPE METHODO TO MINING									
DESCRIBE METHODS TO MINIM	IZE VISIBLE EMISSION	IS DUR	ING IDLING, OR LOW	LOAD O	PERATIONS:				
COMMENTS:									
1									

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

NCDE	NK/DIVISION OF AIR Qua	lity - Application for Air P	ermit to Co	nstruct/Operate			U3
AS REQUIRED BY 15A NCAC 2Q .0112, TH	IIS FORM MUST BE SE	ALED BY A PROFESSION	VAL ENGINI	VER (P.E.) LICENS	SED IN N	IORTH CAROL	INA.
ONTROL DEVICE ID NO: CT-03-SCR and CT-03-C	CONTROLS E	MISSIONS FROM WHICH	EMISSION	SOURCE ID NO(S):	CT-03	
MISSION POINT (STACK) ID NO(S): EP-03	POSITION IN	SERIES OF CONTROLS	1	NO.	OF	UNI	ΓS 1
ANUFACTURER: TBD	МС	DEL NO:					
IANUFACTURE DATE: TBD	PR	OPOSED OPERATION DA	TE:	November 2018			
OPERATING SCENARIO:	PR	OPOSED CONSTRUCTIO	N DATE:	April 2017			
1 of 1							
YPE: AFTERBURNER REGENERA	TIVE THERMAL OXIDA	TION	RECU	PERATIVE THER	MAL OXI	DATION	
X CATALYTIC							
XPECTED LIFE OF CATALYST (YRS): TBD ATALYST MASKING AGENT IN AIR STREAM: HALC	METHOD OF I	DETECTING WHEN CATA PHOSPHOROUS COM		S REPLACMENT: HEAVY METAL		TBD	
	SULFUR COMPOUND	OTHER	IFOUND	_ NONE			
	YST VOL (FT³): TBI	T T	IROUGH CA	TALYST (FPS):	TBD		
CFM THROUGH CATALYST:		1					
ESCRIBE CONTROL SYSTEM, INCLUDING RELATIO	N TO OTHER CONTRO	L DEVICES AND SOURCE	ES, AND AT	TACH DIAGRAM	OF SYST	TEM:	
Selective Catalyst Reduction and Oxidation Cataly							
OLLUTANT(S) COLLECTED:	NO _x	co		VOC		Formaldehyde	
EFORE CONTROL EMISSION RATE (LB/HR):			_				_
APTURE EFFICIENCY:		%	%		%		%
ONTROL DEVICE EFFICIENCY:	80	% 90	%	50	-%	50	<u></u> %
VERALL SYSTEM EFFICIENCY:		%	%		%		%
FFICIENCY DETERMINATION CODE:					_		_
OTAL EMISSION RATE (LB/HR) :							_
RESSURE DROP (IN. H2O): MIN MAX		OUTLET TEMPERATU	RE (°F):	MIN		MAX	
ILET TEMPERATURE (°F): MIN MAX		RESIDENCE TIME (SE	CONDS):				
ILET AIR FLOW RATE (ACFM): (SCFM)):	COMBUSTION TEMPE		=):			
OMBUSTION CHAMBER VOLUME (FT ³):		INLET MOISTURE CO	NTENT (%):				
EXCESS AIR:		CONCENTRATION (pp	omv)	INLET		OUTLE	Т
UXILIARY FUEL USED:		TOTAL MAXIMUM FIRI	NG RATE (M	MILLION BTU/HR):			
AXIMUM ANNUAL FUEL USE: UNITS:		MAXIMUM HOURLY FI	JEL USE:		UNITS:		
CTUAL ANNUAL FUEL USE: UNITS:		ACTUAL HOURLY FUE	L USE:		UNITS:		
ESCRIBE METHOD USED TO INCREASE MIXING:							
						········-	
ESCRIBE METHOD TO INSURE ADEQUATE START-	UP TEMPERATURE:						
ESCRIBE TEMPERATURE MONITORING DEVICES A	ND PROCEDURES:						
	A NOOLDONLO.						
TACK TESTING PORTS: GNO GYES (INLET)	AND OUTLET)						
ESCRIBE MAINTENANCE PROCEDURES:							
ESCRIBE ANY AUXILIARY MATERIALS INTRODUCED	INTO THE CONTROL	SYSTEM:					
TACH A DIAGRAM OF THE RELATIONSHIP OF THE	CONTROL DEVICE TO	ITS EMISSION SOLIDOE	'S)·	<u> </u>			
THE RESTRICTION OF THE RESTROYOR OF THE	CONTINUE DEVICE TO	TO LINIOGION GOUNGE	, ,.				

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NO	DENR/Division of Air (Quality - Applic	ation for Air I	Permit to Cor	nstruct/Opera	te	25707	
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	D:	EG-01	
Caterpillar G3516 Emergency General	tor			CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK) ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOUR	•		,					
Natural gas fired emergency generator used t	o provide power during e	emergency perio	ds when the p	rimary source	of power to th	e facility is un	available.	
TYPE OF EMISSION SO	•		PROPRIATE F				•	
Coal,wood,oil, gas, other burner (Form B1)		,			t. of chemicals	/coatings/inks	(Form B7)	
☐ Int.combustion engine/generator (Form B2)		-, -,	m B5)		ion (Form B8)			
Liquid storage tanks (Form B3)	Storage silos/t		wamb 2042	Other (Fo	•		2016 or Lat	tor
	2017 OPERATION DAT	No	ovember 2018		LE: 24 HR/DA	V 7 DAVAAIU		
MANUFACTURER / MODEL NO.: IS THIS SOURCE SUBJECT TO? NSPS (SU	Caterpillar G3516	JESHAD (SLIDD	L		BPART?): Yes		JE VVIVIT	· ·
PERCENTAGE ANNUAL THROUGHPUT (%)		AR-MAY 25	JUN-AUG			,		
EXPECTED ANNUAL HOURS OF OPERATION		VISIBLE STAC				ATION:	<20	% OPACITY
	AIR POLLUTANT						-20	., ., ., ., .,
0.0.1210		SOURCE OF		D ACTUAL		POTENTIAL	EMSSIONS	S
		EMISSION	(AFTER CONT		(BEFORE CONT	ROLS / LIMITS)	1	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	10.76	0.54	10.76	0.54	10.76	0.54
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	10.76	0.54	10.76	0.54	10.76	0.54
PARTICULATE MATTER<2.5 MICRONS (PM25)		Mfg/AP-42	10.76	0.54	10.76	0.54	10.76	0.54
SULFUR DIOXIDE (SO2)		AP-42	0.14	0.01	0.14	0.01	0.14	0.01
NITROGEN OXIDES (NOx)		Mfg	124.84	6.24	124.84	6.24	124.84	6.24
CARBON MONOXIDE (CO)		Mfg	117.96	5.90	117.96	5.90	117.96	5.90
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg	14.98	0.75	14.98	0.75	14.98	0.75
LEAD								
LOTUED								
OTHER						DUDCE		
	IS AIR POLLUTAN		1		OR THIS S			
	IS AIR POLLUTAN	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	1	
HAZARDOL		SOURCE OF EMISSION	EXPECTE (AFTER CONT	D ACTUAL ROLS / LIMITS)	(BEFORE CONT	POTENTIAL ROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
HAZARDOL HAZARDOUS AIR POLLUTANT AND CAS N	0.	SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONTI Ib/hr	D ACTUAL ROLS / LIMITS) tons/yr	(BEFORE CONT	POTENTIAL rROLS / LIMITS) tons/yr	(AFTER CON	tons/yr
HAZARDOU HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane	O. 79-34-5	SOURCE OF EMISSION FACTOR AP-42	(AFTER CONTI Ib/hr 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.00001	(BEFORE CONT Ib/hr 0.0002	POTENTIAL TROLS / LIMITS) tons/yr 0.00001	(AFTER CON lb/hr 0.0002	tons/yr
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	O. 79-34-5 79-00-5	SOURCE OF EMISSION FACTOR AP-42 AP-42	(AFTER CONTI Ib/hr 0.0002 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002	POTENTIAL TROLS / LIMITS) tons/yr 0.00001 0.00001	(AFTER CON lb/hr 0.0002 0.0002	tons/yr 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	O. 79-34-5 79-00-5 75-34-3	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42	EXPECTE (AFTER CONTI lb/hr 0.0002 0.0002 0.0001	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001	POTENTIAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001	(AFTER CON lb/hr 0.0002 0.0002 0.0001	tons/yr 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	O. 79-34-5 79-00-5 75-34-3 107-06-2	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONTI 1b/hr 0.0002 0.0002 0.0001 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002	POTENTIAL rrols / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001	(AFTER CON 1b/hr 0.0002 0.0002 0.0001 0.0002	tons/yr 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane	O. 79-34-5 79-00-5 75-34-3 107-06-2 78-87-5	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONTI Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001	(AFTER CON lb/hr 0.0002 0.0002 0.0001 0.0002 0.0002	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONTI Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002	POTENTIAL TROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(AFTER CON lb/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONTI Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0003	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0002	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001	(AFTER CON Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0002	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONTI Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0002 0.003 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.003 0.0002 0.003	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(AFTER CON lb/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONTI- 1b/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0002 0.003	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.003 0.0002 0.003	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(AFTER CON Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0002	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane	O. 79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 NIR POLLUTANT E	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONTI- 1b/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0002 0.003 NFORMAT	D ACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.003 0.0002 0.003 THIS SOUR	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(AFTER CON Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane	O. 79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 NIR POLLUTANT E	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONTI Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 NFORMAT	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 TION FOR	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.003 0.0002 0.003 THIS SOUR MITATIONS	POTENTIAL TROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	(AFTER CON Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane TOXIC AIR POLLUTANT AND CAS NO.	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 AIR POLLUTANT E	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 EMISSIONS TUAL EMISSIOI EF SOURCE	EXPECTE (AFTER CONTIL 1b/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 NFORMAT NS AFTER CO	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 FION FOR DNTROLS / LI	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 THIS SOUP MITATIONS	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane TOXIC A IND TOXIC AIR POLLUTANT AND CAS NO. 1,1,2,2-Tetrachloroethane	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 AIR POLLUTANT E	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 EMISSIONS TUAL EMISSIOI EF SOURCE AP-42	EXPECTE (AFTER CONTIL 1b/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 INFORMAT NS AFTER CO	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 TION FOR DNTROLS / LI	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0002 0.003 0.0002 0.003 THIS SOUR MITATIONS Ib/r 0.	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane TOXIC A IND TOXIC AIR POLLUTANT AND CAS NO. 1,1,2,2-Tetrachloroethane 1,2-Dichloroethane	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 MICATE EXPECTED ACT 79-34-5 107-06-2	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONTIL 1b/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 NFORMAT NS AFTER CC 1b 0.00 0.00	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 TION FOR DNTROLS / LI //hr 0002	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 THIS SOUP MITATIONS Ib/ 0.	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane TOXIC AIR POLLUTANT AND CAS NO. 1,1,2,2-Tetrachloroethane 1,2-Dichloroethane 1,3-Butadiene	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 ICATE EXPECTED ACT 79-34-5 107-06-2 106-99-0	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONTIL 1b/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 INFORMAT NS AFTER CO 1b 0.0 0.0 0.0	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 TION FOR DNTROLS / LI //hr 0002 0001	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.003 THIS SOUR MITATIONS Ib/h 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0003 0.0002 0.0003 0.00	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane TOXIC A IND TOXIC AIR POLLUTANT AND CAS NO. 1,1,2,2-Tetrachloroethane 1,3-Butadiene 1,3-Butadiene 1,3-Butadiene 1,3-Butadiene Acetaldehyde	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 AIR POLLUTANT E ICATE EXPECTED ACT 79-34-5 107-06-2 106-99-0 75-07-0	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONTI Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.003 NFORMAT NS AFTER CO Ib 0.0 0.0 0.0 0.0	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 FION FOR DNTROLS / LI //hr 0002 001 003	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.003 THIS SOUR MITATIONS Ib/c 0.0002 0.00000000000000000000000000	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE day 01 00 07	(AFTER CON Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0003 0.0002 0.0003	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane TOXIC A IND TOXIC AIR POLLUTANT AND CAS NO. 1,1,2,2-Tetrachloroethane 1,3-Butadiene 1,3-Butadiene 1,3-Butadiene 4,3-Butadiene Acetaldehyde Acrolein	O. 79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 AIR POLLUTANT E IICATE EXPECTED ACT 79-34-5 107-06-2 106-99-0 75-07-0 107-02-8	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONTILIDATE CON	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 TION FOR DNTROLS / LI //hr 0002 0001 003 03	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 THIS SOUP MITATIONS Ib/ 0. 0. 0. 0. 0. 0.	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE day 01 00 07 67	(AFTER CON Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0003 0.0002	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 Ib/yr 0.02 0.30 2.80 2.80
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane TOXIC AIR POLLUTANT AND CAS NO. 1,1,2,2-Tetrachloroethane 1,3-Butadiene 1,3-Butadiene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Butadiene Acetaldehyde Acrolein Benzene	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 NIR POLLUTANT E IICATE EXPECTED ACT 79-34-5 107-06-2 106-99-0 75-07-0 107-02-8 71-43-2	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 EMISSIONS TUAL EMISSIOI EF SOURCE AP-42	EXPECTE (AFTER CONTILIDATE CON	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 TION FOR DNTROLS / LI //hr 0002 0001 003 003 003	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 THIS SOUP MITATIONS Ib/ 0. 0. 0. 0. 0. 0.	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE day 01 00 07 67 67	(AFTER CON Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.003 0.0002 0.0003 0.000	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 lb/yr 0.02 0.02 0.30 2.80 2.80 0.70
HAZARDOUS AIR POLLUTANT AND CAS N 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Butadiene 1,3-Dichloropropene 2,2,4-Trimethylpentane TOXIC AIR POLLUTANT AND CAS NO. 1,1,2,2-Tetrachloroethane 1,3-Butadiene 1,3-Butadiene 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,3-Butadiene Acetaldehyde Acrolein Benzene Benzo(a)pyrene	79-34-5 79-00-5 75-34-3 107-06-2 78-87-5 106-99-0 542-75-6 540-84-1 MICATE EXPECTED AC 79-34-5 107-06-2 106-99-0 75-07-0 107-02-8 71-43-2 50-32-8 56-23-5	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONTIL 1b/hr 0.0002 0.0002 0.0001 0.0002 0.0003 0.0002 0.003 INFORMAT NS AFTER CC 1b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DACTUAL ROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 TION FOR DNTROLS / LI //hr 0002 001 003 03 03 007 000002	(BEFORE CONT Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.003 THIS SOUR Ib/h 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.0000000 0.00000000	POTENTIAL FROLS / LIMITS) tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE day 01 00 07 67 67 17 00005 01	(AFTER CON Ib/hr 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0002 0.0003 0.0002 0.00	tons/yr 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	Quality - Applic	audii idi Ali	Permit to Co	nstrucvOper	ate		B
MISSION SOURCE DESCRIPTION:			EMISSION S	SOURCE ID N	O:	EG-01	
Caterpillar G3516 Emergency Generator			CONTROL D	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1			EMISSION F	POINT (STACE	() ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTA Natural gas fired emergency generator used to provide power during		•	e primary sour	ce of power to	the facility is	unavailable.	
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking					s/coatings/ink	•	
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finish☐ Liquid storage tanks (Form B3) ☐ Storage silos.		m B5)	☐ Incinerat	tion (Form B8) form B9))		
START CONSTRUCTION DAT April 2017 OPERATION DAT	ΓE: No	vember 2018	DATE MANU	JFACTURED:		2016 or Lat	ter
MANUFACTURER / MODEL NO.: Caterpillar G3516		EXPECTED	OP. SCHEDU	ILE: 24 HR/DA	Y 7 DAY/W	< 52 WK/YF	R
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): Yes, JJJJ	NESHAP (SUBI	PART?): No	MACT (SI	UBPART?): Yo	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 M	IAR-MAY 25	JUN-AUG	25 SEP-	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 100	VISIBLE STAC	K EMISSION	IS UNDER NO	RMAL OPER	ATION:	<20	% OPACITY
CRITERIA AIR POLLUTAN	T EMISSION:	S INFORM	ATION FOR	R THIS SO	URCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	Mfg						
SULFUR DIOXIDE (SO2)	AP-42						
NITROGEN OXIDES (NOx)	Mfg	See F	orm B, Page	1, for criteria	pollutant to	als for this	source
ARBON MONOXIDE (CO)	Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)	Mfg						
LEAD	Mfg						
LEAD OTHER							
LEAD		NS INFORI	MATION FO	OR THIS S	OURCE		
LEAD OTHER			MATION FO	OR THIS S	OURCE POTENTIAL	EMSSIONS	3
LEAD OTHER	NT EMISSIO	EXPECTE				ı	S itrols/limits)
OTHER HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO.	NT EMISSION SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	ı	
LEAD OTHER HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0	NT EMISSION SOURCE OF EMISSION	EXPECTE (AFTER CONT	D ACTUAL ROLS / LIMITS)	(BEFORE CON	POTENTIAL TROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)
HAZARDOUS AIR POLLUTAN HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8	NT EMISSION SOURCE OF EMISSION FACTOR	EXPECTE (AFTER CONT lb/hr	D ACTUAL ROLS / LIMITS) tons/yr	(BEFORE CON'	POTENTIAL TROLS / LIMITS) tons/yr	(AFTER CON	tons/yr
LEAD HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2	NT EMISSION SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003	(BEFORE CONTINUE 1b/hr 0.03 0.03 0.01	POTENTIAL TROLS / LIMITS) tons/yr 0.001	(AFTER CON Ib/hr 0.03 0.03 0.01	tons/yr
LEAD HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001	(AFTER CON lb/hr 0.03 0.03 0.01 0.00001	tons/yr 0.001 0.001 0.0003 0.000001
LEAD HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5	NT EMISSION SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001	(BEFORE CON'	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.0003 0.000001 0.00001	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.00002	tons/yr 0.001 0.001 0.0003 0.000001
LEAD HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7	NT EMISSION SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002	tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001
LEAD HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.0002 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.00003 0.000001 0.00001 0.00001 0.00001	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002	tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001 0.00001
LEAD HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4	NT EMISSION SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.0002 0.0002 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00001	(BEFORE CON' Ib/hr 0.03 0.03 0.01 0.0000 0.0002 0.0002 0.0002	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00001	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002	tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001
LEAD HAZARDOUS AIR POLLUTAN HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT II	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 EMISSIONS	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.0001 0.00001 0.00001 0.00001 0.00001 0.00002 TION FOR	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00001	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002	tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001 0.00001
LEAD HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT II INDICATE EXPECTED AC	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.0002 0.0002 0.0004 NFORMAT	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00002 TION FOR	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.0002 0.0002 0.0004	tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00001
LEAD HAZARDOUS AIR POLLUTAI HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT I INDICATE EXPECTED AC TOXIC AIR POLLUTANT AND CAS NO.	SOURCE OF EMISSION FACTOR AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 AP-42 EMISSIONS TUAL EMISSION	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.0002 0.0002 0.0004 INFORMAT	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001 0.00002 TION FOR ONTROLS / L	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002 0.0004	tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00001
LEAD HAZARDOUS AIR POLLUTAN HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT I INDICATE EXPECTED AC TOXIC AIR POLLUTANT AND CAS NO. Chlorobenzene 108-90-7	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.00002 0.00002 0.0004 INFORMAT NS AFTER CC	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00002 TION FOR ONTROLS / L	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0003 0.000001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002 0.0004	tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00002
LEAD HAZARDOUS AIR POLLUTAN HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT I INDICATE EXPECTED AC TOXIC AIR POLLUTANT AND CAS NO. Chlorobenzene 108-90-7 Chloroform 67-66-3	NT EMISSION SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.00002 0.00002 0.00004 INFORMAT NS AFTER CO Ib 0.00	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00002 TION FOR ONTROLS / L //hr 0002	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0003 0.000001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002 0.0004	tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00002
LEAD HAZARDOUS AIR POLLUTAN HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT INDICATE EXPECTED AC TOXIC AIR POLLUTANT AND CAS NO. Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylene Dibromide 106-93-4	NT EMISSION SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002 0.0004 INFORMAT NS AFTER CC Ib 0.00 0.00	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00002 TION FOR ONTROLS / L //hr 0002 0002	(BEFORE CONTIBLE OF THE SOUP ID- CONTIBLE OF T	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002	tons/yr 0.001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00002
LEAD HAZARDOUS AIR POLLUTAN HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT INDICATE EXPECTED AC TOXIC AIR POLLUTANT AND CAS NO. Chlorobenzene Chloroform 67-66-3 Ethylene Dibromide 106-93-4 Formaldehyde 50-00-0	NT EMISSION SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0002 0.0004 INFORMAT 0.00 0.00 0.00	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00002 TION FOR 0002 0002 0002 0003 0002	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0004	tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001 0.00002
LEAD HAZARDOUS AIR POLLUTAN HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT INDICATE EXPECTED AC TOXIC AIR POLLUTANT AND CAS NO. Chlorobenzene Chloroform 67-66-3 Ethylene Dibromide 106-93-4 Formaldehyde 50-00-0 Hexane (or n-Hexane) 110-54-3	SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.00002 0.0004 INFORMAT IS AFTER CO 0.0 0.0 0.0 0.0	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.0001 0.00001 0.00001 0.00001 0.00002 TION FOR ONTROLS / L //hr 0002 0002 0003	(BEFORE CON' Ib/hr	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0004	tons/yr 0.001 0.0003 0.000001 0.00001 0.00001 0.00001 0.00002
LEAD HAZARDOUS AIR POLLUTAN HAZARDOUS AIR POLLUTANT AND CAS NO. Acetaldehyde 75-07-0 Acrolein 107-02-8 Benzene 71-43-2 Biphenyl 92-52-4 Carbon Tetrachloride 56-23-5 Chlorobenzene 108-90-7 Chloroform 67-66-3 Ethylbenzene 100-41-4 TOXIC AIR POLLUTANT INDICATE EXPECTED AC TOXIC AIR POLLUTANT AND CAS NO. Chlorobenzene Chloroform 67-66-3 Ethylene Dibromide 106-93-4 Formaldehyde 50-00-0	NT EMISSION SOURCE OF EMISSION FACTOR AP-42	EXPECTE (AFTER CONT Ib/hr 0.03 0.03 0.01 0.00001 0.00002 0.00002 0.0004 INFORMAT Ib 0.0 0.0 0.0 0.0 0.0 0.0	D ACTUAL ROLS / LIMITS) tons/yr 0.001 0.001 0.0003 0.000001 0.00001 0.00001 0.00002 TION FOR 0002 0002 0002 0003 0002	(BEFORE CON'	POTENTIAL TROLS / LIMITS) tons/yr 0.001 0.0001 0.00001 0.00001 0.00001 0.00001 0.00002 RCE	(AFTER CON Ib/hr 0.03 0.03 0.01 0.00001 0.0002 0.0002 0.0004	tons/yr 0.001 0.0001 0.0003 0.000001 0.00001 0.00001 0.00002

dachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ate		В
EMISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID N	O:	EG-01	
Caterpillar G3516 Emergency Generator			CONTROL D	EVICE ID NO	(S):	NA	_
OPERATING SCENARIO 1 of 1			EMISSION F	OINT (STACE	() ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTA	CH FLOW DIAG	RAM):	•				
Natural gas fired emergency generator used to provide power during	emergency per	iods when the	e primary sour	ce of power to	the facility is	unavailable).
TYPE OF EMISSION SOURCE (CHECK AND O	OMPLETE API	PROPRIATE I	FORM B1-B9	ON THE FOL	LOWING PAG	3ES):	
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking	(Form B4)			t. of chemical	s/coatings/ink	s (Form B7)	
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finish	ing/printing (For	m B5)	Incinerat	tion (Form B8)			
☐ Liquid storage tanks (Form B3) ☐ Storage silos/	bins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DAT April 2017 OPERATION DAT	TE: No	vember 2018	DATE MANU	JFACTURED:	*	2016 or La	ter
MANUFACTURER / MODEL NO.: Caterpillar G3516		EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	K 52 WK/Y	R
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): Yes, JJJJ	NESHAP (SUBI	PART?): No	MACT (SI	JBPART?): Ye	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 M	AR-MAY 25	JUN-AUG	25 SEP-I	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 100	VISIBLE STAC					<20	% OPACITY
CRITERIA AIR POLLUTANT	EMISSIONS	S INFORMA	ATION FOR	THIS SOL	JRCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	S
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	Mfg						
SULFUR DIOXIDE (SO2)	AP-42						
NITROGEN OXIDES (NOx)	Mfg	See F	orm B, Page	1, for criteria	pollutant tot	als for this	source
ARBON MONOXIDE (CO)	Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)	Mfg						
LEAD							
OTHER							
HAZARDOUS AIR POLLUTAI	NT EMISSIOI	VS INFORM	MATION FO	OR THIS SO	DURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Ethylene Dibromide 106-93-4	AP-42	0.0003	0.00001	0.0003	0.00001	0.0003	0.00001
Formaldehyde 50-00-0	AP-42	0.20	0.01	0.20	0.01	0.20	0.01
Hexane (or n-Hexane) 110-54-3	AP-42	0.002	0.0001	0.002	0.0001	0.002	0.0001
Methanol 67-56-1	AP-42	0.009	0.0004	0.01	0.0004	0.01	0.0004
Methylene Chloride 75-09-2	AP-42	0.001	0.00003	0.001	0.00003	0.001	0.00003
Naphthalene 91-20-3	AP-42	0.0003	0.00002	0.0003	0.00002	0.0003	0.00002
PAH	AP-42	0.0005	0.00002	0.0005	0.00002	0.0005	0.00002
Phenol 108-95-2	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
TOXIC AIR POLLUTANT E	MISSIONS I	NFORMAT	TION FOR	THIS SOUR	RCE		
INDICATE EXPECTED ACT	TUAL EMISSION	NS AFTER CO	ONTROLS / LI	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb	/hr	lb/d	day		lb/yr
Styrene 100-42-5	AP-42	0.0	002	0.0	005		0.02
Toluene 108-88-3	AP-42	0.0	003	0.	08	(0.35
Vinyl Chloride 75-01-4	AP-42	0.0	001	0.0	002	(0.01
			204	1 0	02		0.10
Xylene 1330-20-7	AP-42	0.0	JU1	U.	UZ	,	J. 10
Xylene 1330-20-7	AP-42	0.0	JUT	U.	02		5.10
Xylene 1330-20-7	AP-42	0.0	JU1	U.	02		5.10

Litachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDEN	R/Division of Air (Quality - Applic	ation for Air	Permit to Co	nstruct/Oper	ate		В
MISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	O:	EG-01	
Caterpillar G3516 Emergency Generator				CONTROL D	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STACE	K) ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS (ATTA	CH FLOW DIAG	RAM):					
Natural gas fired emergency generator used to pro	ovide power during	emergency per	iods when the	e primary sour	ce of power to	the facility is	unavailable).
TYPE OF EMISSION SOURCE	<u>`</u>		PROPRIATE				•	
Coal,wood,oil, gas, other burner (Form B1)	Woodworking			_		s/coatings/ink	s (Form B7)	1
☐ Int.combustion engine/generator (Form B2)	Coating/finishi	0.	m B5)	_	tion (Form B8))		
Liquid storage tanks (Form B3)	Storage silos/	· · ·		Other (F				
	OPERATION DAT			DATE MANU		7 5 4 7 4 4 4	2016 or La	
MANUFACTURER / MODEL NO.:	Caterpillar G3516					AY 7 DAY/W	K 52 WK/Y	R
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA					UBPART?): Y	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DE		AR-MAY 25	JUN-AUG		NOV 25	ATION	-00	0/ ODACITY
EXPECTED ANNUAL HOURS OF OPERATION:	100 R POLLUTANT	VISIBLE STAC					<20	% OPACITY
CATERIA AII	TOLLOTAN				T 11113 300		EMOCIONI	
		SOURCE OF EMISSION	ì	D ACTUAL		POTENTIAL	I .	
AIR POLLUTANT EMITTED		FACTOR	Ib/hr	ROLS / LIMITS)		TROLS / LIMITS)		tops/us
PARTICULATE MATTER (PM)		Mfg/AP-42	10/11	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (FM) PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See F	orm B. Page	1. for criteria	pollutant to	als for this	source
ARBON MONOXIDE (CO)		Mfg		z, . ugo	.,	, pondiant to		004,00
(VOC)		Mfg						
LEAD		9						
OTHER								
HAZARDOUS A	IR POLLUTAN	NT EMISSION	NS INFORI	MATION F	OR THIS S	OURCE	(lighter)	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	 S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Styrene	100-42-5	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
Toluene	108-88-3	AP-42	0.003	0.0002	0.003	0.0002	0.003	0.0002
Vinyl Chloride	75-01-4	AP-42	0.0001	0.000004	0.0001	0.000004	0.0001	0.000004
Xylene	1330-20-7	AP-42	0.001	0.00005	0.001	0.00005	0.001	0.00005
TOXIC AIR I	POLLUTANT E	MISSIONS I	NFORMAT	TION FOR	THIS SOUP	RCE		
INDICATI	E EXPECTED ACT	TUAL EMISSIO	NS AFTER CO	ONTROLS / L	IMITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/	'day		lb/yr
		1						
		ļ						
			See Fori	m B, Pages 1	-3, for TAP to	tals for this	source	
			_					
Ittachments: (1) emissions calculations and supporting do	cumentation: (2) indic	cate all requested	ctate and feder	al enforceable -	osmit limite /	house of occasi	tion omississ	bac/anta

ttachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of	Air Quali	ty - Application fo	or Air Permit	to Construct/Operate			B2
EMISSION SOURCE DESCRIPTION:	Caterpillar G3516 Emerg	ency Gen	erator	E	MISSION SOURCE ID N	10:	EG-01	
				c	ONTROL DEVICE ID N	O(S):	NA	
OPERATING SCENARIO 1 of 1				Е	MISSION POINT (STAC	K) ID NO(S):	EP-04	
CHECK ALL THAT APPLY	☑ EMERGENCY	П	SPACE HEAT	· · · ·	☐ ELECTRICAL GE			***
	PEAK SHAVER	_	OTHER (DESCRI	BE):	_			
GENERATOR OUTPUT (KW):	1,000				ERATION AS PEAK SH	AVER (HRS/	YR): N/A	
ENGINE OUTPUT (HP): 1,416							,	
TYPE ICE: GASOLINE ENGINE	☐ DIESEL ENG	SINE LIP 1	O 600 HP F	DIESEL EN	IGINE GREATER THAN	600 HP	☐ DUAL FUEL	FNGINE
A STATE OF THE PERSON NAMED IN COLUMN TO STATE OF THE PER	natural gas fired emerge		h-banksin-		(complete below)			
ENGINE TYPE RICH BUR					(complete bottom)			
EMISSION REDUCTION MODIFICAT	_		ETARD	□ PREIGNI	ITION CHAMBER COME	BUSTION	☑ OTHER Air/	fuel ratio
OR STATIONARY GAS TURI					MPRESSOR OR TURBI			
FUEL NATURAL GAS			TYPE: 2-CY				TURBINE	
OTHER (DESCRIBE):				CLE RICH BU				
CYCLE: COGENERATION		CONTRO			ODIFICATIONS (DESCR			
☐ REGENERATIVE	☐ COMBINED		ECTIVE CATALY		•	. —	IC REDUCTION	
CONTROLS: WATER-S	TEAM INJECTION		BURN AND PREC			UNCONTRO		
	LEAN-PREMIX							
		SAGE (I	NCLUDE STAI	RTUP/BAC	KUP FUEL)			
		·		A DESIGN		REQUESTED	CAPACITY	
FUEL TYPE	UNITS			(UNIT/HR)		LIMITATION		
Natural Gas	MMBtu			2.5		N/A		
Natural Gas	Milviotu		12	2.5		IN//	^	
	FUEL CHARACTE	RISTICS	S (COMPLETE	ΔΙΙ ΤΗΔ	T ARE APPLICABL	F)		70.77
				7.022 1105			CONTENT	
FUEL TYPE	BTU/UNIT		IIN	ITS		(% BY W	CONTENT (FIGHT)	
Natural Gas	1,020		S	cf		0.00	005	
	MANUEACTURE	פסב פינ	CIEIC EMISSI	ON EACTO	DRS (IF AVAILABL	=1	TOTAL STITE	and the same
POLLUTANT							2 0	TUED
	NOX		00	PM	PM10	VOC		THER
EMISSION FACTOR g/hp-hr	2.00		.89	NA	NA NA	0.24		
UNIT	g/hp-hr	g/r	p-hr			g/hp-	·hr	
COMMENTS:	IZE VISIBLE EMISSION	NO DUK	ING IDLING, OR	LOW LOAD	DOPERATIONS.			·····

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate							В	
MISSION SOURCE DESCRIPTION:	1000			EMISSION S	OURCE ID N	O:	TK-1	
TK-1 Accumulator Storage Tank				CONTROL D	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION F	OINT (STAC	() ID NO(S):	NA	
DESCRIBE IN DETAILTHE EMISSION : TK-1 will have a capacity of 2,500 gallon				s filter.				
TYPE OF EMISSI	ON SOURCE (CHECK AND	COMPLETE AF	PROPRIATE	FORM B1-B	ON THE FO	LLOWING PA	(GES):	· · · · · · · · · · · · · · · · · · ·
Coal,wood,oil, gas, other burner (For	. –	(Form B4)		Manufac	t. of chemical	s/coatings/inks	s (Form B7)	
Int.combustion engine/generator (For	,	01 01	m B5)	_	ion (Form B8))		
Liquid storage tanks (Form B3)	Storage silos/			☑ Other (F				
	April 2017 OPERATION DAT	E: No		DATE MANU			2016 or Later	
MANUFACTURER / MODEL NO.:	NA NA		L			Y 7 DAY/W	C 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSP				CT (SUBPAR				
PERCENTAGE ANNUAL THROUGHPU		AR-MAY 25	JUN-AUG		NOV 25	471011		N/ 0040IT/
EXPECTED ANNUAL HOURS OF OPER	RATION: 8,760 TERIA AIR POLLUTAN	VISIBLE STAC						% OPACITY
CAIT	LNIA AIN FOLLOTAN				K INIS SC		- FM0010M0	
		SOURCE OF EMISSION		D ACTUAL			L EMSSIONS	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/ur	lb/hr	ROLS / LIMITS)
PARTICULATE MATTER (PM)	····	FACTOR	10/111	tons/yi	10/11/	tons/yr	10/111	tons/yr
PARTICULATE MATTER<10 MICRONS (F	PM ₁₀)	_	_	-	_	_		
PARTICULATE MATTER<2.5 MICRONS (I		_		-		-	_	
SULFUR DIOXIDE (SO2)	2.37	-	-	-	-	-	-	-
NITROGEN OXIDES (NOx)	. 277 ° .	-	-	-	-	-	-	-
RBON MONOXIDE (CO)		-	-	-	-	-	-	-
VOLATILE ORGANIC COMPOUNDS (V	OC)	Mass balance	0.08	0.35	0.08	0.35	0.08	0.35
LEAD								
OTHER								
HAZAF	RDOUS AIR POLLUTA	NT EMISSIC	NS INFOR	RMATION F	OR THIS S	OURCE	The Late	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND C	AS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
NA				ļ				
			_					
TO	XIC AIR POLLUTANT	EMISSIONS	INFORMA	TION FOR	TUIC COL	DCE		
10	INDICATE EXPECTED AC					Triangle Woman Company of the last		
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE		/hr		day	Ib.	o/yr
NA		EF SOURCE	ID.	/111	IU/	uay	11.	7/ yı
			_					
								
achments: (1) emissions calculations and su	poorting degramentation: (2) indi-	anto all requested	etata and fada-	al onformable =	omit limite (e.e.	hours of one	ion aminaian sat	loo) and donoribe

now these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 12/01/01 NCD	ENR/Division of Air Quality	- Application for Air Per	mit to Construct/Operate		BJ
EMISSION SOURCE DESCRIPTION:	Accumulator Stora	ge Tank EMISSI	ON SOURCE ID NO: TK-1		
100 m		CONTR	OL DEVICE ID NO(S): NA		
OPERATING SCENARIO 1 of 1		EMISSI	ON POINT (STACK) ID NO(S): EP-05		
		H STORAGE TANK	The second secon	THE	
DESCRIBE IN DETAIL THE STORAGE TANK TK-1 will have a capacity of 2,500 gallons and	•	,	ilter.		
LIQUID STORED: Liquids from compre	essor engine fluids filter	LIQUID MOLECULAR W	EIGHT (LB/LB-MOLE): TBD		
TANK CAPACITY (GAL): 2,500		VAPOR MOLECULAR W	EIGHT (LB/LB-MOLE): TBD		
AVERAGE LIQUID SURFACE TEMPERATUR	RE (F): 77	VAPOR PRESSURE AT	AVE. LIQUID SURFACE TEMP (PSIA):	7.70 (Reid)	
MIN. LIQUID SURFACE TEMP (F): 44	MAX. LIQUID SURFACE TE	MP (F): 80	MAX. TRUE VAPOR PRESS. (PSIA):	7.70 (Reid)	
BULK LIQUID TEMPERATURE (F):	BREATHER VENT SETTING	GS (PSIG) VACUUN	' 		
SHELL DIAMETER (FT): 4.6	SHELL CONDITION: X G	900D POOR	IS TANK HEATED: YES X NO		
SHELL COLOR: Grey/Light	MAXIMUM THROUGHPUT	(GAL/YR): 12,500	MAXIMUM TURNOVERS PER YEAR:	5.00	
WORKING VOLUME (GAL): 2,500	ACTUAL THROUGHPUT (G		ACTUAL TURNOVERS PER YEAR:	5.00	
MAX. FILLS PER DAY: TBD	MAX. FILLING RATE (GAL/I	MIN): TBD	MIN. DURATION OF FILL (HR/FILL):	TBD	
	VERTICA	L FIXED ROOF TAI	iks		
SHELL HEIGHT (FT): 20	ROOF TYPE:	X CONE OR	DOME ROOF HEIGHT (FT):	4.61	
AVERAGE LIQUID HEIGHT (FT): 10	ROOF COND	OITION: X GOOD OR	POOR		
MAXIMUM LIQUID HEIGHT (FT): 20	ROOF COLO	R: Grey			
	НОІ	RIZONTAL TANKS			
SHELL LENGTH (FT): NA	IS TANK UNI	DERGROUND ?: YE	s x no		<u> </u>
	FLOA	TING ROOF TANKS		THE REAL PROPERTY.	
DESCRIBE PERTINENT TANK DATA SUCH	AS DECKS, RIM-SEALS, LI	QUID DENSITY @ 60 DE	G F:		
NA					
DESCRIBE ANY MONITORING OR WARNIN	G DEVICES (SUCH AS LEA	K AND FUME DETECTION	N INSTRUMENTATION)		
NA	O DEVIOLO (OCOTI AC LEA	IVAND TOME DETECTION	N ING INGINERYATION.		
COMMENTS:					
GOMMENTO.					
8					

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Oper	ate		В
MISSION SOURCE DESCRIPTION:			EMISSION S	SOURCE ID N	O:	Fug-01	4
Fugitive Leaks - Blowdowns			CONTROL D	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1			EMISSION F	OINT (STACI	() ID NO(S):	NA	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTA Fugitive Emissions from station blowdowns.	CH FLOW DIAG	GRAM):					
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE API	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking				t. of chemical		•)
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finish	ning/printing (For	m B5)	Incinerat	tion (Form B8))		
☐ Liquid storage tanks (Form B3) ☐ Storage silos	/bins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DAT April 2017 OPERATION DA	TE: No	vember 2018	DATE MANU	FACTURED:		2016 or La	iter
MANUFACTURER / MODEL NO.: NA		EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	K 52 WK/Y	'R
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No NESH	AP (SUBPART?): No MA	ACT (SUBPAR	T?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 N	MAR-MAY 25	JUN-AUG	25 SEP-I	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 8,760	VISIBLE STAC						% OPACITY
CRITERIA AIR POLLUTAN	T EMISSIONS	SINFORM	ATION FOR	R THIS SOL	JRCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSION	S
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	-	-	-	-	-	-	· .
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	-	-	-	-	-	-
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	-	-	-	-	-	-	-
SULFUR DIOXIDE (SO2)	-	-		-	-	-	-
INITROGEN OXIDES (NOx)	-		-	-	-	-	-
ARBON MONOXIDE (CO)	-	4.00	-	-		-	-
VOLATILE ORGANIC COMPOUNDS (VOC)	Mass balance	4.30	18.84	4.30	18.84	4.30	18.84
OTHER							
HAZARDOUS AIR POLLUTAI	NT EMISSION	VS INFOR	MATION E	D TUIC C	OUDCE		
TIAZANDOS AIN FOLICITAI	1			I I I I I I I		FMOOLON	
	SOURCE OF EMISSION		D ACTUAL		POTENTIAL	1	
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	ROLS / LIMITS)		tons/ur		NTROLS / LIMITS)
Hexane 110-54-3	Mass balance	0.24	tons/yr 1.06	lb/hr 0.24	tons/yr 1.06	lb/hr 0.24	tons/yr
110-54-5	IVIASS DAIAIICE	0.24	1.00	0.24	1.00	0.24	1.06
	1					-	
			 				
TOXIC AIR POLLUTANT I	MISSIONS I	NFORMAT	ION FOR	THIS SOUP	RCE		J
INDICATE EXPECTED AC							
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb	/hr	lb/	day		lb/yr
Hexane 110-54-3	Mass balance		24		81		120.00
					·		
ttachments: (1) emissions calculations and aumenting decumentation; (2) in the	ingle off convenient	atata and fadaa	al anformati's -	annit limita (ha		antan) and

Ittachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

FORM B9 EMISSION SOURCE (OTHER)

REVISED: 12/01/01 NCDENR/Division of Air Quality	- Application for Air	Permit to Construc	ct/Operate		B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOUR	CE ID NO:	Fug-01	
Fugitive Leaks - Blowdowns		CONTROL DEVIC	CE ID NO(S):	NA	
OPERATING SCENARIO: 1 of 1		EMISSION POINT	(STACK) ID NO(S):	NA	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):					
Fugitive Emissions from station blowdowns.					
MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS		MAX. DESIGN	REQUEST	ED CAPACI	ΓΥ
TYPE	UNITS	APACITY (UNIT/H	LIMITATIO	N(UNIT/HR)	
Natural gas	NA	NA	NA		
				_	
				-	
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUEST	ED CAPACI	ГҮ
TYPE	UNITS	PACITY (UNIT/BAT	LIMITATION	(UNIT/BATC	H)
NA .					
				_	
		1			
MAXIMUM DESIGN (BATCHES / HOUR): NA				-	
REQUESTED LIMITATION (BATCHES / HOUR): NA	(BATCHES/YR):	NA			
FUEL USED: NA	TOTAL MAXIMUM F	IRING RATE (MILLI	ON BTU/HR):	NA	
MAX. CAPACITY HOURLY FUEL USE: NA	REQUESTED CAPA	CITY ANNUAL FUE	L USE:	NA	
COMMENTS:					

Attach Additional Sheets as Necessary

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Oper	ate		B
MISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID N	O:	Fug-02	
Fugitive Leaks - Piping			CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1			EMISSION F	POINT (STACE	() ID NO(S):	NA	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTA Fugitive Emissions from station piping leaks.	ACH FLOW DIAG	GRAM):					
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE APP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking	g (Form B4)		☐ Manuface	t. of chemical	s/coatings/ink	s (Form B7))
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finis	hing/printing (For	m B5)	Incinerat	tion (Form B8)			
Liquid storage tanks (Form B3)	s/bins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DAT April 2017 OPERATION DA	TE: No	vember 2018	DATE MANU	JFACTURED:		2016 or La	iter
MANUFACTURER / MODEL NO.: NA		EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	K 52 WK/Y	R
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No NESH	IAP (SUBPART?): No MA	ACT (SUBPAR	RT?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 M	MAR-MAY 25	JUN-AUG	25 SEP-I	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 8,760	VISIBLE STAC						% OPACITY
CRITERIA AIR POLLUTAN	T EMISSIONS	SINFORM	ATION FOR	R THIS SOL	JRCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSION	S
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	-	-		-	-	-	-
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	-	-	-	-	-	-
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	-	-	-	-	-	-	-
SULFUR DIOXIDE (SO2)	-	-	-	-	-	<u> </u>	
NITROGEN OXIDES (NOx)	-	-		-	-		-
ARBON MONOXIDE (CO)	-	-	-	-	-	-	-
VOLATILE ORGANIC COMPOUNDS (VOC)	EPA	4.57	20.03	4.57	20.03	4.57	20.03
LEAD							ļ
OTHER							L
HAZARDOUS AIR POLLUTA				OR THIS S			COLC. SHOW
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	, EMSSION:	S
	EMISSION		ROLS / LIMITS)		TROLS / LIMITS)		NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Hexane 110-54-3	Mass Balance	0.26	1.13	0.26	1.13	0.26	1.13
	4						
				ļ			
	4		ļ				
			 				
			 	 			
TOXIC AIR POLLUTANT	EMISSIONS	NEODMAI	TION FOR	THIS SOLIT	l.		
INDICATE EXPECTED AC					(CE		
				1		T	" '
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE		/hr		day	 	lb/yr
Hexane 110-54-3	Mass Balance	U.	.26	б.	19	2,4	260.00
	 						
				-			
	+						
	1						
~~	1					 	
trachments: (1) emissions calculations and supporting documentation: (2) inc	licate all resusated	ctate and for	nl onforceable -	ormit limite (c =	house of one	ton amissis-	mtoe) and

Ittachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

FORM B9 EMISSION SOURCE (OTHER)

	Application for All	Permit to Construc	roberate	L	B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOUR		Fug-02	
Fugitive Leaks - Piping		CONTROL DEVIC	E ID NO(S):	NA	
OPERATING SCENARIO: 1 of 1		EMISSION POINT	(STACK) ID NO(S):	NA	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):					
Fugitive Emissions from station piping leaks.					
		T			
MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS		MAX. DESIGN		ED CAPACIT	Υ
TYPE	UNITS	APACITY (UNIT/H		N(UNIT/HR)	
Natural gas	NA	NA	NA		
		ļ			
	<u> </u>			<u> </u>	
	<u> </u>				
	1		-		
MATERIALS ENTERING PROCESS - BATCH OPERATION		MAX. DESIGN	REQUEST	ED CAPACIT	Υ
TYPE	UNITS	PACITY (UNIT/BA	LIMITATION		
NA		`		`	
					
			-		
MAXIMUM DESIGN (BATCHES / HOUR): NA					
MAXIMUM DESIGN (BATCHES / HOUR): NA REQUESTED LIMITATION (BATCHES / HOUR): NA	(BATCHES/YR):	NA			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA	(BATCHES/YR): TOTAL MAXIMUM F		ON BTU/HR):	NA	
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	T	RING RATE (MILLI		NA NA	
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			
REQUESTED LIMITATION (BATCHES / HOUR): NA FUEL USED: NA MAX. CAPACITY HOURLY FUEL USE: NA	TOTAL MAXIMUM FI	RING RATE (MILLI			

Attach Additional Sheets as Necessary

FACILITY-WIDE EMISSIONS SUMMARY

D1 EVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate **CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE EXPECTED ACTUAL EMISSIONS** POTENTIAL EMISSIONS POTENTIAL EMISSIONS (BEFORE CONTROLS / (AFTER CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) AIR POLLUTANT EMITTED tons/yi tons/yr tons/yr PARTICULATE MATTER (PM) 18.68 18.68 18.68 PARTICULATE MATTER < 10 MICRONS (PM₁₀) 18.68 18.68 18.68 PARTICULATE MATTER < 2.5 MICRONS (PM2 5) 18.68 18.68 18.68 SULFUR DIOXIDE (SO2) 3.09 3.09 3.09 NITROGEN OXIDES (NOx) 24.23 52.51 24.23 CARBON MONOXIDE (CO) 34.46 34.46 88.36 VOLATILE ORGANIC COMPOUNDS (VOC) 41.62 43.07 41.62 LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL EMISSIONS** POTENTIAL EMISSIONS POTENTIAL EMISSIONS (AFTER CONTROLS / (AFTER CONTROLS / (BEFORE CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) HAZARDOUS AIR POLLUTANT EMITTED CAS NO tons/vr tons/yr tons/yr 1.1.2.2-Tetrachloroethane 79-34-5 0.00001 0.00001 0.00001 1,1,2-Trichloroethane 0.00001 79-00-5 0.00001 0.00001 1,1-Dichloroethane 0.00001 75-34-3 0.00001 0.00001 1.2-Dichloroethane 107-06-2 0.00001 0.00001 0.00001 1,2-Dichloropropane 0.00001 78-87-5 0.00001 0.00001 1.3-Butadiene 0.0003 106-99-0 0.0003 0.0005 -Dichloropropene 542-75-6 0.00001 0.00001 0.00001 2,2,4-Trimethylpentane 0.0002 540-84-1 0.0002 0.0002 Acetaldehyde 106-99-0 0.02 0.03 0.02 Acrolein 75-07-0 0.004 0.006 0.004 Benzene 71-43-2 0.005 0.010 0.005 Biphenyl 0.000001 92-52-4 0.000001 0.000001 Carbon Tetrachloride 56-23-5 0.00001 0.00001 0.00001 TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY. Modeling Required? Note TOXIC AIR POLLUTANT EMITTED CAS NO. lb/year Yes 1 lb/hr lb/day No 1,1,2,2-Tetrachloroethane 79-34-5 0.0002 0.01 0.02 х 1 1,2-Dichloroethane 107-06-2 0.0001 0.00 0.02 х 1 1,3-Butadiene 1 106-99-0 0.003 0.07 0.62 х Acetaldehyde 0.03 33.32 75-07-0 0.75 x 1 Acrolein 75-07-0 0.03 0.69 7.69 х 1 Ammonia 7664-41-7 1 2.83 68.04 24,773.28 х 1 Benzene 71-43-2 0.01 0.19 9.86 х

COMMENTS:

Formaldehyde

Benzo(a)pyrene

Chlorobenzene

Chloroform

Carbon Tetrachloride

Ethylene Dibromide

xane (or n-Hexane)

Note 1: The combustion sources proposed for the Northampton Compressor Station are exempt from NC DENR Air Toxics permitting requirements per 15A NCAC 02Q.0702(a)(25), as the aggregate allowable natural gas heat input value for these sources is less than 450 MMBtu/hr, and they will be the only source of benzene at the facility.

0.0000005

0.01

0.004

0.004

0.01

10.79

5.85

0.000002

0.02

0.02

0.02

0.03

2,217.70

2,120.16

X

X

х

х

Х

х

1

1

1

1

1

1

1

0.00000002

0.0002

0.0002

0.0002

0.0003

0.45

0.24

50-32-8

56-23-5

108-90-7

67-66-3

106-93-4

50-00-0

110-54-3

FACILITY-WIDE EMISSIONS SUMMARY

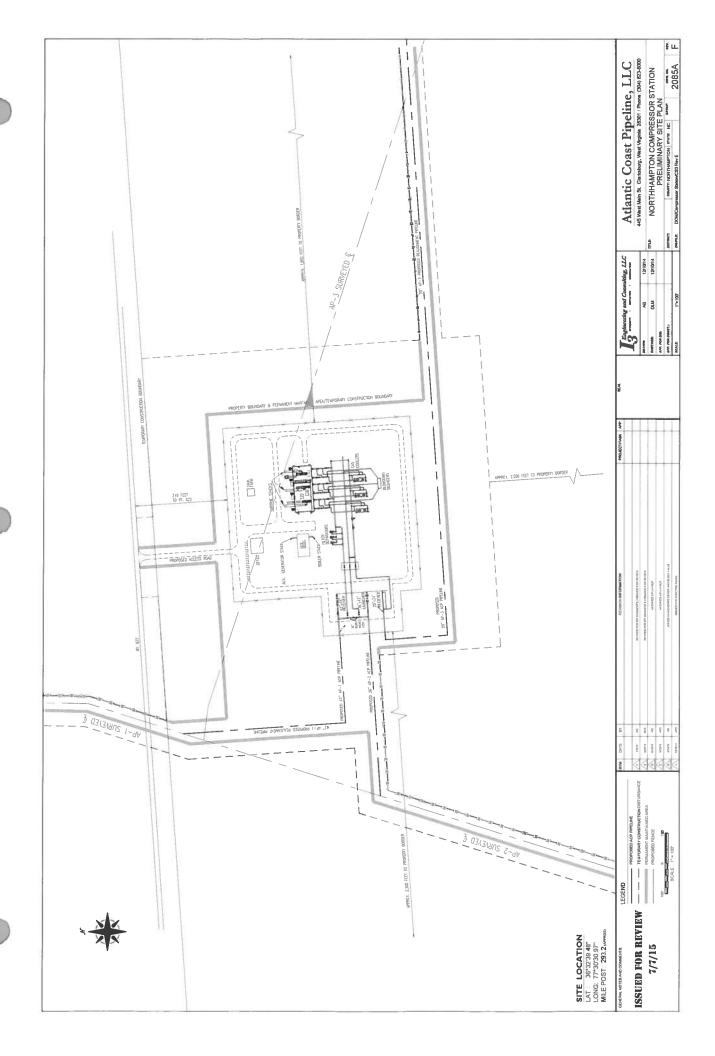
D1 REVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL EMISSIONS** POTENTIAL EMISSIONS POTENTIAL EMISSIONS (AFTER CONTROLS / (BEFORE CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) AIR POLLUTANT EMITTED tons/yr tons/yr tons/yr PARTICULATE MATTER (PM) PARTICULATE MATTER < 10 MICRONS (PM10) PARTICULATE MATTER < 2.5 MICRONS (PM2.5) SULFUR DIOXIDE (SO2) See Form D1, Page 1, for criteria pollutant totals. NITROGEN OXIDES (NOx) CARBON MONOXIDE (CO) VOLATILE ORGANIC COMPOUNDS (VOC) LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL EMISSIONS** POTENTIAL EMISSIONS **POTENTIAL EMISSIONS** (AFTER CONTROLS / (BEFORE CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) HAZARDOUS AIR POLLUTANT EMITTED CAS NO. tons/yr tons/yr tons/yr Chlorobenzene 108-90-7 0.00001 0.00001 0.00001 Chloroform 67-66-3 0.00001 0.00001 0.00001 Ethylbenzene 100-41-4 0.01 0.02 0.01 Ethylene Dibromide 106-93-4 0.00001 0.00001 0.00001 Formaldehyde 75-07-0 1.11 2.21 1.11 Hexane (or n-Hexane) 110-54-3 1.06 1.06 1.06 Methanol 67-56-1 0.0004 0.0004 0.0004 Methylene Chloride 75-09-2 0.00003 0.00003 0.00003 Napthalene 91-20-3 0.001 0.001 0.001 PAH 0.001 0.001 0.002 Phenol 108-95-2 0.00001 0.00001 0.00001 Propylene oxide 75-56-9 0.01 0.02 0.01 Styrene 100-42-5 0.00001 0.00001 0.00001 Toluene 108-88-3 0.05 0.05 TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY. Modeling Required? Note TOXIC AIR POLLUTANT EMITTED CAS NO. lb/hr lb/day lb/year Yes No 1 Methylene Chloride 75-09-2 0.0005 0.01 0.05 1 X 108-95-2 0.0002 0.004 Phenol 0.02 х 1 Styrene 100-42-5 0.0002 0.005 0.02 1 x Toluene 108-88-3 0.01 0.36 99.55 1 х Vinyl Chloride 75-01-4 0.0001 0.002 0.01 X 1 Xylene 1330-20-7 0.01 0.16 48.94 COMMENTS:

Note 1: The combustion sources proposed for the Northampton Compressor Station are exempt from NC DENR Air Toxics permitting requirements per 15A NCAC 02Q.0702(a)(25), as the aggregate allowable natural gas heat input value for these sources is less than 450 MMBtu/hr, and they will be the only source of benzene at the facility.

FACILITY-WIDE EMISSIONS SUMMARY

REVISED 12/01/01 NCDEN		Quality - Application			erate	ì	D1
		ANT EMISSIONS					STEEL STEEL STEEL
	7171111 0112017		UAL EMISSIONS		EMISSIONS	POTENTIAL	EMISSIONS
			ONTROLS /		CONTROLS /		ONTROLS /
		,	TIONS)	1 '	ATIONS)		TIONS)
AIR POLLUTANT EMITTED		 	ns/yr		ns/yr		s/yr
PARTICULATE MATTER (PM)		(6)	io yi	101	10. J.		<u>,</u>
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)		1					
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})		-					
SULFUR DIOXIDE (SO2)		-					
			See Form D1,	Page 1 for cri	teria nollutant	totals	
NITROGEN OXIDES (NOx)			00010111121,	age i, ioi oii	toria ponatarit		
CARBON MONOXIDE (CO)		-					
VOLATILE ORGANIC COMPOUNDS (VOC)		-					
LEAD		4					
OTHER	NIC AID DOLLLI	TANT FMICCION	C INFORMATION	LEACHITY	WIDE		
HAZARDO	US AIR PULLU	TANT EMISSION				Lacrentin	FINANCIANA
			TUAL EMISSIONS		EMISSIONS		EMISSIONS
			ONTROLS /	`	CONTROLS /	,	ONTROLS /
HAZADDOUG AID DOLL HTANT PARTED	040 NO	 	ATIONS)		ATIONS)	 	TIONS)
Vinyl Chloride	CAS NO.		ns/yr	† 	ns/yr	1	s/yr
	75-01-4	+	00004	 	00004		0004
Xylene	1330-20-7	0.02	24468	0	0.05		02
				-		ļ	
				····			
						ļ <u>. </u>	
						<u> </u>	
				ļ			
				ļ			
							Management of the Control of the Con
TOXIC	AIR POLLUTAN	NT EMISSIONS IN	IFORMATION - F	ACILITY-WIL	DE		
INDICATE REQUESTED ACTUAL EMISSIONS AF					RMIT EMISSIO	N RATE (TPE	R) IN 15A
NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION	I MODELING. US	E NETTING FORM	DZ IF NECESSARY	•			1
		1		T		Required ?	
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	
		D4 D 0 1	n r - r . mam				
	See Forn	n D1, Pages 2 and	s, for for TAP totals	5			
2							
COMMENTS:							Autoria
Note 1: The combustion sources proposed for t	he Northampton	Compressor Statio	n are exempt from	NC DENR Air	Toxics permitt	ing requiremen	nts per 15A
NCAC 02Q.0702(a)(25), as the aggregate allowal	ole natural gas he	eat input value for t	hese sources is le	ss than 450 MI	MBtu/hr, and ti	ney will be the	only source
of benzene at the facility.							

AIR POLLUTANT NETTING WORKSHEET


vised:12/01/01	NCDENR/Division of Air Quality - Application	on for Air Permit to Construct/Operat	te D2
JRPOSE OF NETTING: X	AIR TOXICS PSD (100/250 tons per year)	PSD SIGNIFICANT LEVELS	
R POLLUTANT:	All (See Form D1) CAS	NO.:	
MISSION SOURCE ID NOS.:	Facility-Wide		
SEC	TION A - EMISSION OFFSETTING ANA	ALYSIS FOR MODIFIED/NEW	SOURCES
Summarize in this section	The state of the s	IS - USE APPROPRIATE COLUMNS (
using the B forms	LB/YEAR	LB/DAY	LB/HR
MODIFICATION	See comments below		
INCREASE			1000000
- MINUS -	- MINUS -	- MINUS -	- MINUS -
MODIFICATION			
DECREASE			
= EQUALS =	= EQUALS =	= EQUALS =	= EQUALS =
NET CHANGE			
FROM MODIFICATION			
	SECTION B - FACILITY-WIDE EM	ISSION NETTING ANALYSIS	
CREDITABLE	See comments below		
INCREASE			
- MINUS -	- MINUS -	- MINUS -	- MINUS -
CREDITABLE	55 2		
DECREASE			
= EQUALS =	= EQUALS =	= EQUALS =	= EQUALS =
NET CREDITABLE			
CHANGE			
	SECTION C - FACILITY	/-WIDE EMISSIONS	
TOTAL FACILITY	See comments below		
EMISSIONS			
TPER LEVELS (2Q .0711)			
ECK HERE IF AN AIR DISPER	SION MODELING ANALYSIS IS REQUIRED		
OMMENTS:			

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

VISED: 12/01/01 **D4** NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate **ACTIVITIES EXEMPTED PER 2Q.0102 OR** INSIGNIFICANT ACTIVITIES PER 2Q .0503 FOR TITLE V SOURCES SIZE OR BASIS FOR EXEMPTION OR INSIGNIFICANT **DESCRIPTION OF EMISSION SOURCE** PRODUCTION RATE **ACTIVITY** Per 15A NCAC 2Q.0102(c)(2)(B)(iv), fuel combustion Natural Gas Boiler (used for building heat) 6.3 MMBtu/hr equipment (except internal combustion engines and equipment burning waste oil) with a heat input rating less than 10 million Btu per hour used solely for space heating is exempt from permitting. Per 15A NCAC 02Q.0102(c)(1)(D)(i), storage tanks used TK-2, Hydrocarbon Waste Tank, will receive and store used oil 2. 1,500 gallons used in oil-filled operational equipment throughout the facility. solely to store used motor oil, lubricants, and cooling oils are exempt from permitting. Per 15A NCAC 02Q.0102(c)(1)(D)(iii), storage tanks used TK-3, Aqueous Ammonia Storage Tank, will be used to supply 3. 8,000 gallons solely to store inorganic liquids are exempt from permitting. aqueous ammonia to the SCRs. 8. 9. 10.

APPENDIX B

FACILITY PLOT PLAN

APPENDIX C

POTENTIAL TO EMIT CALCULATIONS

<u>Table C-1 Permit to Construct Application Project Equipment List</u> ACP Northampton Compressor Station - Northampton County, North Carolina

Emission	Source	Manifacturer	Model/Type	Rated
Point ID	2000	Mailulactural	model i spe	Capacity
CT-01	Compressor Turbine	Solar Turbines	Taurus 70-10802S	11,882 hp
CT-02	Compressor Turbine	Solar Turbines	Centaur 50-6200LS	8,414 hp
CT-03	Compressor Turbine	Solar Turbines	Centaur 40-4700S	5,023 hp
EG-01	Emergency Generator	Caterpillar	G3516	1,416 hp
WH-01	Boiler	TBD	TBD	6.3 MMBtu/hr
FUG-01	Fugitive Leaks - Blowdowns	•	•	t
FUG-02	Fugitive Leaks - Piping	,	ı	,
TK-1	Accumulator Tank	1	'	2,500 gal
TK-2	Hydrocarbon (Waste Oil) Tank	1	ł	1,500 gal
TK-3	Ammonia Tank			8,000 gal

Table C-2 Potential Emissions From Combustion Sources

ACP Northampton Compressor Station - Northampton County, North Carolina

Turbine Operational Parameters:

				r
8,677	0	쬬	33.3	0.75.8
Normal Hours of Operation:	Hours at Low Load (<50%)	Hours of Low Temp. (< 0 deg. F)	Hours of Start-up/Shut-down	Total Hours of Operation (br/vm).

Normal Hours of Operation: 100 **Emergency Generator Operational Hours:**

Boiler/Heater Operational Parameters:

Pre-Control Potential to Emit

	Power					ਨ	Criteria Pollui	tants (tpy)				0	GHG Emissi	Emissions (tpy)	4	Ammonia (tpy)	HAP (tov)
Combustion Sources	Rating	Units	Fuel	NOx	၀၁	NOC	802	PMF	PMF-10	PMF-2.5	PMC	C02	CH4	N20	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	11,882	hp	Natural Gas	14.9	23.8	1.36	1.43	2.42	2.42	2.42	5.99	49,980	3.62	1.26	50,446	5.77	0.525
Solar Centaur 501, Turbine	8,414	dų	Natural Gas	9.2	14.8	0.834	0.894	1.51	1.51	1.51	3.74	31,295	2.26	0.788	31,587	3.58	0.352
Solar Centaur 40 Turbine	5,023	hp	Natural Gas	22.0	25.6	0.702	0.760	1.29	1.29	1.29	3.18	26,718	1.92	0.671	26.966	3.02	0.286
Caterpillar G3516 Egen	1,416	фų	Natural Gas	0.312	0.295	0.0375	0.0003	0.0214	0.0214	0.0214	900'0	674	0.290	0	85.1	0	0.0143
Boiler	6.3	MMBtu/hr	Natural Gas	1.35	2.27	0.149	0.0162	0.0514	0.0514	0.0514	0.154	3246	0.0622	0.0595	3266	0	0.0511
Total (tons/yr)	(AA)			47.7	8.99	3.08	3.10	5.3	5.3	5.3	13.07	111.317	8.15	2.78	112.350	12.4	123

Turbine Control Efficiencies

Control Technology	NOX	00	NOC
Selective Catalytic Reduction (Centaur 40)	80%		
Selective Catalytic Reduction (All Others)	44%		
Oxidation Catalyst (Centaur 40)	,	%06	20%
Oxidation Catalyst (All Others)	,	80%	20%

Post-Control Potential to Emit

	Power					5	Criteria Pollui	(lutants (tpy)				0	GHG Emissions (ons (tpv)		Ammonia (tpv)	HAP (tov)
Combustion Sources	Rating	Units	Fuel	NOx	co	Noc	802	PWF	PMF-10	PMF-2.5	PMC	C02	CH4	N20	C02e	NH3	Total HAP
Solar Taurus 70 Turbine	11,882	hp	Natural Gas	8.25	4.76	0.680	1.43	2.42	2.42	2,42	5.99	49,980	3.62	1.26	50,446	5.77	0.525
Solar Centaur 50L Turbine	8,414	ф	Natural Gas	5.14	2.96	0.417	0.894	1.51	1,51	1,51	3.74	31,295	2.26	0.788	31,587	3.58	0.352
Solar Centaur 40 Turbine	5,023	hр	Natural Gas	4.39	2.56	0.351	092.0	1.29	1.29	1.29	3.18	26,718	1.92	0.671	26.966	3.02	0.286
Caterpillar G3516 Egen	1416	ф	Natural Gas	0.312	0.295	0.0375	0.0003	0.0214	0.0214	0.0214	900.0	77.9	0.290	0	85.1	0	0.0143
Boiler	6.3	MMBtu/hr	Natural Gas	1.35	2.27	0.149	0.0162	0.0514	0.0514	0.0514	0.154	3,246	0.0622	0.0595	3,266	0	0.0511
Total (tons/yr	c/yr)			19.4	12.8	1.63	3.10	5.3	5.3	5.3	13.07	111.317	8.15	2.78	112.350	12.4	1.229

(1) Turbine emissions are calculated by the following formula: ER * Run Hours / 2000 * (f - Control Efficiency)
2000 = the amount of labs in a not following formula: Power Rating * Run Hours * EF / 2000 |
2) Emergency Generator emissions are calculated by the following formula: Power Rating * Run Hours * EF / 2000 |
2) Emergency Generator emissions are calculated by the following formula: Power Rating * Run Hours / HHV / 2000 |
2000 = the amount of labs in a ton |
3) Boiler/Heater emissions calculated by the following formula: EF * Power Rating * Run Hours / HHV / 2000 |
2000 = the amount of labs in a ton |
3) Boiler/Heater Heat Capacity (MMBU/h) |
4) Hower Rating = Boiler/Heater Heat Capacity (MMBU/h) |
4) Hower Rating = Boiler/Heater Heat Capacity (MMBU/h) |
4) Hower Rating = Boiler/Heater Heat Capacity (MMBU/h) |
4) Turbines are equipped with Selective Catalytic Reduction (SCR) and oxidation catalyst has a control of 90% for CO |
5) Taurus Centaur 40 oxidation catalyst has a control of 90% for CO |
6) Emergency generator engine by taken from manufacturer data |
7) Boiler assumed to have low-NOX burners |
7) Boiler assumed to have low-NOX burners |
8) See Emissions Pactors table for Emissions Factors for each operating scenario.
(10) Each start-up/shut-down event assumed to last 10 minutes |
8) Sea Emissions Rations (10) Each start-up/shut-down event assumed to last 10 minutes |
8)

Table C-3 Event Based Potential Emissions From Combustion Sources ACP Northampton Compressor Station - Northampton County, North Carolina

Start-up Emissions

	Power			Start-up	Cit	teria Pollutants (1	(Ad	SHB	Emissions	(tov)
Combustion Sources	Rating	Units	Fuel	Events	NOX	00	YOC	C02	CH4	C02e
Solar Taurus 70 Turbme	11,882	ф	Natural Gas	100	0.0400	3.86	0.0420	28.0	n 168	30.2
Solar Centaur 501, Turbine	8 414	£	Natural Goo	500	0.0400	2 40	00400			3
Color Cantonia 40 Tinting				3	2000	3 40	0.0400	602	0.100	6.72
Sold Certifical 40 Juroste	5,023	du.	Natural Gas	8	0 0320	322	0.0370	19 8	0.148	23.3

			New Con	3	0.0400	200	0.0420	7007	200	200
Solar Centaur 50L Turbine	8,414	£	Natural Gas	100	0.0400	3.46	0.0400	23.5	0.480	27.5
Solar Centaur 40 Turbine	5,023	ם	Natural Gas	100	0 0350	3.22	0.0370	18.6	0.148	27.2
	Total (tons/rt)	(JAV.)			0.115	10.33	0 119	80.0	0.476	8
Shutdown Emissions										
	Power			Shutdown	ES.	Criteria Pollutants (tpv	(Ad)	GHG	GHG Emissions	(tow)
Combustion Sources	Rating	Units	Finel	Events	NOX	00	YOC	C02	CH4	C02e
Solar Taurus 70 Turbine	11,882	đ	Natural Gas	100	0 0550	4.87	0.0530	28.8	0.212	7
Solar Centaur 50L Turbine	8,414	hp	Natural Gas	100	0.0200	1.77	0 0 0 0 0	10.9	00800	12.0
Solar Centaur 40 Turbme	5,023	hp	Natural Gas	100	0.0150	151	0.0170	9 02	0.0880	108
	Total (tons.)rr)	ψ.)			0.090	7.950	0.090	48.7	0.360	57.7
	50									
Tota	Total SUSD Emissions (tons/n)	ms (fonsly)			0.205	18.28	0.209	117.7	0.836	130
										2

Compressor Blowdown Emissions Source Designation:

Blowdown Start-up Events

om Start-up	38000	schevent
low rate	385	scf-fomol
ecular Weight	16	lomd-d
cent Weight	83%	%

Blowdown Shuldown Events

scllevent	scf-lbmol	lo-lbmol	%	
63000	385	18	93%	
Blowdown from Shutdown	Volumetric flow rate	Methane Molecular Weight	Methane Percent Weight	1

Pollutant	Molecular	(Volume)	W. Fraction ¹⁴¹
	{lb/lb-mo}}	fmoleti	6, 14
Total Stream Molecular Weight	16.89		
Non-VOC			
Carlem Dioxide	10'14	1.041%	271%
Nitrogen	28.01	0.994%	1,69%
Methane	16.04	9421%	89.47%
Ethano	20.00	2.923%	5.20%
VOC			
Propare	44.10	0.546%	1.43%
n-Bulape	58.12	0.084%	0.29%
IsoBulane	58.12	26/070	0.27%
r-Pentane	72.15	0.022%	946070
IsoPentane	72.15	0.024%	0.10%
n-Hexane	78.11	0.032%	0.13%
ri-Heptane	100.21	0.049%	0.29%
Total VOC Fraction			2.62%
Total HAP Fraction			0.15%

Blowdown from Startup Events

	dana da		3	IG Emissions	(Ad)	
Combustion Sources	Events	voc	202	CH4	CO2e	HAPs
Solar Taurus 70 Turbine	100	2.216	2.293	75.834	1,893	0.125
Solar Centaur 50l, Turbine	100	2.218	2.293	75634	1,893	0.125
Solar Centaur 40 Turbine	100	2.218	2.293	75.634	1,893	0.125
Total (tons/yr)		6.649	6.880	227	5,679	0.376

Blowdown from Shudown Events

	Startup		5	HG Emissions	(tbA)	
Combustion Sources	Events	voc	C02	CH4	COZe	HAPs
Solar Taurus 70 Turbine	100	3.675	3.80	125.39	3,139	0.207
Solar Centaur 50L Turbine	100	3.675	3 80	125.39	3,139	0.207
Solar Centaur 40 Turbine	100	3 675	3 80	125.39	3,139	0.207
Total (tons./yr)		11.024	11.41	376	8.416	0.822

Site-Wide Blowdown Events

IIC-TANGE CHANGE	2,000,000	SCHEVELL
olumetric flow rate	385	scf-lbmol
ethane Molecular Weight	18	lo-pmol
ethane Percent Weight	93%	*
rte-Wide Blowdown	88 990	th/event

Blowdown from Site Wide Events

	dreigo		9	HG EMISSIONS	Man Man	
Combustion Sources	Events	VOC	C02	CH4	CO2e	HAPs
ACP-3	-	1.167	1.21	39.8	966	0 088
Total (tons./yr)		1.167	1.21	39.8	986	0.066

18.8 19.5 643	issions (tons./m)
---------------	-------------------

<u>Table C-4 Combustion Source Criteria Pollutant Emission Factors</u> ACP Northampton Compressor Station - Northampton County, North Carolina

			1000	Solar	Turbine N	ormal Open	ation Emissi	on Factors ((p/hr)						
juipment Name	Fuel	Units	×ON	00	VOC	802	PMF	PMF-10	PMF-2.5	PMC	C02	CH4	NZO	COZe	NH3
plar Centaur 40 Turbine	Natural Gas	s lb/hr	4.70	5.70	0.160	0.173	0.294	0.294	0.294	0.727	6100	0.439	0.153	6157	0.690
plar Centaur 50L Turbine	Natural Gas	s lb/hr	1.98	3.30	0.190	0.204	0.345	0.345	0.345	0.855	7145	0.516	0.180	7212	0.818
Har Taurus 70 Turbine	Natural Gas	s lb/hr	3.18	5.30	0.310	0.326	0.553	0.553	0.553	1.37	11411	0.826	0.288	11517	1.32

(1) Pre-Control Emission Rates for NOx, CO, VOC, PMF, PMC, and CO2 taken from Solar Turbine Data at 100% load and 0 degrees F
(2) Emission Factors for SO2, CH4, N2O taken from AP-42 in (lbs/MMBtu) and multiplied by turbine fuel throughput by Solar Turbine at 100% load and 0 degree F to get Emission Rates
(3) Assume PMF=70HF-10=PMF-2.5; Filterable and Condensable based on Solar Turbine Emission Factor and ratio of AP-42 Table 3.1 factors

(4) NH3 emission rates based on a 10 ppm ammonia slip from the SCR based on manufacturer information (5) CO2e emission rate calculated by multiplying each GHG (CO2, CH4, N2O) by its Global Warming Potential (GWP) and adding them together (6) CO2 GWP = 1; CH4 GWP = 25; N2O GWP = 298 [40 CFR Part 98]

	Solar Turbi	ne Alterna	te Operatic	on Emissio	Solar Turbine Alternate Operation Emission Factors ((lb/hr)		
			>	0 degrees	1	Solar	Solar Turbine Low Load F	Load F
Equipment Name	Fuel	Units	NOx	တ	VOC	NOX	00	VOC
Solar Centaur 40 Turbine	Natural Gas	lb/hr	62.7	34.2	0.320	36.6	2,280	6.40
Solar Centaur 50L, Turbine	Natural Gas	lb/hr	26.4	19.8	0.380	15.4	1,320	7.60
Solar Taurus 70 Turbine	Natural Gas	lb/hr	42.4	31.8	0.620	24.7	2,120	12.4

Notes

(1) Pre-Control low temperature Emission Rates for NOx, CO, VOC. Conservatively assume 120 ppm NOx, 150 ppm CO, and 5 ppm VOC (10% of UHC) per Table 2 of Solar PIL 167 (2) Pre-Control low load Emission Rates for NOx, CO, VOC. Conservatively assume 70 ppm NOx, 10,000 ppm CO, and 100 ppm VOC (10% of UHC) per Table 4 of Solar PIL 167

		Solar	Turbine	Start-up and	d Shutdown	n Emission Fac	actors (lb/ev	ent)					Section of
				Start-u	t-up EFs	A STATE OF THE PARTY.				Shutdown	wn EFs		
quipment Name	Fuel Units	NOX	၀	200	C02	CH4	CO2e	NOX	တ	NOC	C02	CH4	CO2e
olar Centaur 40 Turbine	Natural Gas Ib/even	nt 0.700	64.4	0.740	392	2.96	466	0.300	30.2	0.340	181	1.36	215
olar Centaur 50L Turbine	Natural Gas Ib/even	nt 0.800	69.1	0.800	469	3.20	549	0.400	35.4	0.400	217	1.60	257
olar Taurus 70 Turbine	Natural Gas Ib/event	nt 0.800	73.1	0.840	519	3.36	603	1.10	93.4	1.06	575	4.24	681

Notes

(1) Start-up and Shutdown Emissions based on Solar Turbines Incorporated Product Information Letter 170: Emission Estimates at Start-up, Shutdown, and Commissioning for SoLoNOx Combustion Products (13 June 2012). Emission Estimates do not include SO2, PM, N2O, or any HAPs.
(2) VOGs assumed to be 20% of UHC and CH4 assumed to be 80% of UHC.
(3) CO2e emission rate calculated by multiplying each GHG (CO2, CH4) by its Global Warming Potential (GWP) and adding them together
(4) CO2 GWP = 1; CH4 GWP = 25; [40 CFR Part 98]

					Engine	e and Boile	r Emission F	Factors							
Equipment Type	Fuel	Units	NOx	co	VOC	S02	PMF	PMF-10	PMF-2.5	PMC	C02	CH4	NZO	CO2e	NH3
Boiler < 100 MMBtu	Natural Gas	b/MMscf	50	84	5.5	9.0	1.9	1.9	1.9	5.7	120000	2.3	2.2	120713	00.00
Space & Water Heaters	Natural Gas	b/MMscf	100	84	5.5	9.0	1.9	1.9	1.9	5.7	120000	2.3	2.2	120713	00.00
Engine 2 SLB	Natural Gas	b/MMBtu	3.17	0.386	0.12	0.000588	0.0384	0.0384	0.0384	0.00991	110	1.45	0	146	00.00
1000 KW Caterpillar Egen	Natural Gas	b/hp-hr	0.004408	0.004166	0.000529	4.62E-06	0.0003018	0.00030179	0.000302	7.79E-05	1.0998	0.0041	0	-	0.00

(1) NOx, CO, VOC, and PMF-10 Emission Factors for Boilers < 100 MMBtu from ETI Combustion Analysis June 2015
(2) All other emission factors for natural gas boilers taken from AP-42 Tables 1.4-1 & 1.4-2
(3) Emission Factors for Space & Water Heaters taken from AP-42 Tables 1.4-1 & 1.4-2
(4) Emission Factors for Space & Water Heaters taken from AP-42 Tables 2.2-1
(5) NOx, CO, VOC, CO2, and CH4 emission factors for Caterpillar Egens taken from Caterpillar Manufacturer data
(6) NOx, CO, VOC, CO2, and CH4 emission factors for Caterpillar Egens taken from AP-42 Table 3.2-1 and converted using manufacturer fuel data
(6) SO2, PMF- PMF-10-PMF-2.5, PMC, and N2O Emission factors for Caterpillar Egens taken from AP-42 Table 3.2-1 and converted using manufacturer fuel data
(7) Assume PMF-PMF-10-PMF-2.5
(8) CO2 GWP = 15 CH4 GWP = 25; N2O GWP = 298 [40 CFR 98]

<u>Table C-5 Hazardous Air Pollutant (HAP) Emissions From Combustion Sources</u> ACP Northampton Compressor Station - Northampton County, North Carolina

			nual HAP Emis	sions (lb/yr)				
Quantity @ ACP-3		1	1	1	1	1	1	1
Pollutant	HAP?	Solar Centaur 40 Turbine	Solar Centaur 50L Turbine	Solar Taurus 70 Turbine	Boiler < 100 MMBtu	Boiler < 100 MMBtu	Boiler < 100 MMBtu	1000 KW Caterpillar Egen
1,1,2,2-Tetrachloroethane	Yes							0.024
1,1,2-Trichloroethane	Yes		1					0.019
1,1-Dichloroethane	Yes							0.014
1,2,3-Trimethylbenzene	No				-			0.013
1,2,4-Trimethylbenzene	No							0.040
1,2-Dichloroethane	Yes							0.015
1,2-Dichloropropane	Yes							0.016
1,3,5-Trimethylbenzene	No							0.006
1,3-Butadiene	Yes							0.295
1,3-Dichloropropene 2,2,4-Trimethylpentane	Yes							0.016
2-Methylnaphthalene	Yes				0.004	0.000	0.000	0.305
3-Methylchloranthrene	No				0.001 0.000	0.000	0.000	0.008
7,12-Dimethylbenz(a)anthracene	No				0.000	0.000	0.000	
Acenaphthene	No				0.000	0.000	0.000	0.000
Acenaphthylene	No				0.000	0.000	0.000	0.001
Acetaldehyde	Yes	i			2.300		5.555	2.796
Acrolein	Yes	İ						2.803
Anthracene	No				0.000	0.000	0.000	0.000
Benz(a)anthracene	No				0.000	0.000	0.000	0.000
Benzene	Yes				0.114	0.009	0.004	0.699
Benzo(a)pyrene	No				0.000	0.000	0.000	0.000
Benzo(b)fluoranthene	No				0.000	0.000	0.000	0.000
Benzo(e)pyrene	No							0.000
Benzo(g,h,i)perylene	No				0.000	0.000	0.000	0.000
Benzo(k)fluoranthene Biphenyl	No				0.000	0.000	0.000	0.000
Butane	Yes				440.000	0.040	2.007	0.001
Butyr/Isobutyraldehyde	No No				113.622	9.018	3.607	1.711 0.157
Carbon Tetrachloride	Yes							0.137
Chlorobenzene	Yes			-				0.022
Chloroethane	Yes							0.010
Chloroform	Yes				-			0.017
Chrysene	No				0.000	0.000	0.000	0.000
Cyclohexane	No		ĺ					0.111
Cyclopentane	No							0.034
Dibenzo(a,h)anthracene	No				0.000	0.000	0.000	
Dichlorobenzene	Yes				0.065	0.005	0.002	
Ethane	No				167.728	13.312	5.325	25.544
Ethylbenzene	Yes	ļ. <u>.</u>						0.039
Ethylene Dibromide	Yes				2 222		2 2 2 2	0.026
Fluoranthene	No				0.000	0.000	0.000	0.000
Fluorene Formaldehyde	No Yes	541.000	664.779	000.000	0.000	0.000	0.000	0.001
Hexane (or n-Hexane)	Yes	541.000	004.779	992.029	4.058 97.391	0.322 7.729	0.129 3.092	19.888 0.160
Indeno(1,2,3-c,d)pyrene	No				0.000	0.000	0.000	0.000
Isobutane	No		-		0.000	0.000	0.000	1.351
Methanol	Yes			-				0.894
Methylcyclohexane	No							0.122
Methylene Chloride	Yes							0.053
n-Nonane	No							0.011
n-Octane	No							0.027
Naphthalene	Yes				0.033	0.003	0.001	0.035
PAH	Yes							0.048
Pentane (or n-Pentane)	No				140.675	11.165	4.466	0.551
Perylene	No							0.000
Phenanthrene	No				0.001	0.000	0.000	0.001
Phenol	Yes							0.015
Propane	No				86.569	6.871	2.748	10.340
Propylene Oxide	Yes			<u> </u>	0.000	0.000	0.000	0.000
Pyrene	No				0.000	0.000	0.000	0.000
Styrene Tetrachloroethane	Yes				<u>.</u>			0.020
Toluene	No				0.104	0.045	0.000	0.247
Vinyl Chloride	Yes Yes		\vdash		0.184	0.015	0.006	0.347
Kylene	Yes							0.009
Arsenic	Yes				0.011	0.001	0.000	0.097
Barium	No		\vdash		0.011	0.001	0.000	
Beryllium	Yes				0.238	0.000	0.000	
Cadmium	Yes				0.060	0.005	0.000	
z se se 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 1 1 2 3				0.000	0.000	0.002	

Table C-5 Hazardous Air Pollutant (HAP) Emissions From Combustion Sources ACP Northampton Compressor Station - Northampton County, North Carolina

		An	nual HAP Emis	sions (lb/yr)				
Quantity @ ACP-3		1	1	1	1	1	1	1
Pollutant	HAP?	Solar Centaur 40 Turbine	Solar Centaur 50L Turbine	Solar Taurus 70 Turbine	Boiler < 100 MMBtu	Boiler < 100 MMBtu	Boiler < 100 MMBtu	1000 KW Caterpillar Egen
Chromium	Yes				0.076	0.006	0.002	
Cobalt	Yes				0.005	0.000	0.000	
Copper	No				0.046	0.004	0.001	
Manganese	Yes				0.021	0.002	0.001	
Mercury	Yes				0.014	0.001	0.000	
Molybdenum	No				0.060	0.005	0.002	
Nickel	Yes				0.114	0.009	0.004	
Selenium	Yes				0.001	0.000	0.000	
Vanadium	No				0.124	0.010	0.004	
Zinc	No				1.569	0.125	0.050	
Lead	Yes		<u> </u>		0.027	0.002	0.001	
Total HAPs		572.934	704.019	1050.586				
Total HAP/unit (lb/yr)		572.934	704.019	1050.586	102	8.11	3.24	29
Total HAP/unit (TPY)		0.286	0.352	0.525	0.051	0.004	0.002	0.014

Hazardous Air Pollutant

Notes:

- (1) Emissions above are on a per unit basis
 (2) Calculations for the Caterpillar emergency generator assume 100 hours of operation; all other calculations assume 8,760 hours of operation
 (3) Heat rates for Solar Turbines taken from Solar Datasheets
 (4) Solar turbines have a 50% HAP control efficiency due to the Oxidation Catalyst

<u>Table C-6 Combustion Source HAP Emission Factors</u>
ACP Northampton Compressor Station - Northampton County, North Carolina

			E	mission Factor	8	
Pollutant	HAP?	Solar Centaur 40 Turbine	Solar Centaur 50L Turbine	Solar Taurus 70 Turbine	Boiler < 100 MMBtu	1000 KW Caterpillar Egen
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMscf	lb/hp-hr
1,1,2,2-Tetrachloroethane	Yes					1.7E-07
1,1,2-Trichloroethane	Yes					1.3E-07
1,1-Dichloroethane	Yes	<u> </u>				9.9E-08
1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	No No	-				9.0E-08 2.8E-07
1,2-Dichloroethane	Yes					1.1E-07
1,2-Dichloropropane	Yes					1.1E-07
1,3,5-Trimethylbenzene	No					4.6E-08
1,3-Butadiene	Yes					2.1E-06
1,3-Dichloropropene	Yes					1.1E-07
2,2,4-Trimethylpentane	Yes					2.2E-06
2-Methylnaphthalene	No				2.4E-05	5.4E-08
3-Methylchloranthrene	No				1.8E-06	
7,12-Dimethylbenz(a)anthracene	No				1.6E-05	
Acenaphthene	No				1.8E-06	3.4E-09
Acenaphthylene	No				1.8E-06	8.1E-09
Acetaldehyde	Yes					2.0E-05
Acrolein	Yes				0.45.60	2.0E-05
Anthracene Benz(a)anthracene	No	-			2.4E-06	1.8E-09
Benz(a)anthracene Benzene	No Yes	ļ	-		1.8E-06 2.1E-03	8.5E-10
Benzene Benzo(a)pyrene	No	 			1.2E-06	4.9E-06 1.4E-11
Benzo(b)fluoranthene	No	-			1.2E-06 1.8E-06	2.2E-11
Benzo(e)pyrene	No				1.02-00	6.0E-11
Benzo(g,h,i)perylene	No				1.2E-06	6.3E-11
Benzo(k)fluoranthene	No				1.8E-06	1.1E-11
Biphenyl	Yes					1.0E-08
Butane	No	-			2.1E+00	1.2E-05
Butyr/Isobutyraldehyde	No					1.1E-06
Carbon Tetrachloride	Yes					1.5E-07
Chlorobenzene	Yes					1.1E-07
Chloroethane	Yes					
Chloroform	Yes				_	1.2E-07
Chrysene	No				1.8E-06	1.7E-09
Cyclohexane	No					7.8E-07
Cyclopentane	No				4.05.00	2.4E-07
Dibenzo(a,h)anthracene Dichlorobenzene	No Yes				1.2E-06	
Ethane	No	-			1.2E-03	4.05.04
Ethylbenzene	Yes				3.1E+00	1.8E-04 2.7E-07
Ethylene Dibromide	Yes					1.9E-07
Fluoranthene	No				3.0E-06	9.2E-10
Fluorene	No				2.8E-06	4.3E-09
ormaldehyde	Yes	2.9E-03	2.9E-03	2.9E-03	7.5E-02	1.4E-04
Hexane (or n-Hexane)	Yes				1.8E+00	1.1E-06
ndeno(1,2,3-c,d)pyrene	No				1.8E-06	2.5E-11
sobutane	No					9.5E-06
Methanol	Yes					6.3E-06
Methylcyclohexane	No					8.6E-07
Methylene Chloride	Yes					3.7E-07
n-Nonane	No					7.8E-08
n-Octane	No					1.9E-07
Naphthalene	Yes				6.1E-04	2.5E-07
PAH Partons (or a Bartons)	Yes				0.05.05	3.4E-07
Pentane (or n-Pentane)	No				2.6E+00	3.9E-06
Perylene Phenanthrene	No	 			175.05	1.3E-11
Phenol	No Yes				1.7E-05	9.0E-09 1.1E-07
Propane	No	-			1.6E+00	7.3E-05
Propylene Oxide	Yes				1.02700	1.3E-03
Pyrene	No				5.0E-06	1.5E-09
Styrene	Yes				J.UL=00	1.4E-07
Tetrachloroethane	No	1				1.46701
Toluene	Yes				3.4E-03	2.5E-06
/inyl Chloride+A32	Yes					6.3E-08
Kylene	Yes					6.8E-07
Arsenic	Yes				2.0E-04	
Barium	No	\vdash			4.4E-03	
Beryllium	Yes				1.2E-05	
Cadmium	Yes				1.1E-03	

Table C-6 Combustion Source HAP Emission Factors

ACP Northampton Compressor Station - Northampton County, North Carolina

				mission Facto	rs	
Pollutant	HAP?	Solar Centaur 40 Turbine	Solar Centaur 50L Turbine	Solar Taurus 70 Turbine	Boiler < 100 MMBtu	1000 KW Caterpillar Egen
		lb/MMBtu	lb/MMBtu	lb/MMBtu	lb/MMscf	lb/hp-hr
Chromium	Yes				1.4E-03	
Cobalt	Yes				8.4E-05	
Copper	No				8.5E-04	
Manganese	Yes				3.8E-04	
Mercury	Yes				2.6E-04	
Molybdenum	No				1.1E-03	
Nickel	Yes				2.1E-03	
Selenium	Yes				2.4E-05	
Vanadium	No				2.3E-03	
Zinc	No				2.9E-02	
Lead	Yes	4			5.0E-04	
Total HAPs		3.1E-03	3.1E-03	3.1E-03		

Hazardous Air Pollutant

- (1) Emission factors for Solar and Capstone natural gas turbines from AP-42 Table 3.1-3
- (2) Emission factors for natural gas boilers from AP-42 Tables 1.4-2, 1.4-3, and 1.4-4
- (3) Emission factors for 2 SLB natural gas engines and Caterpillar natural gas emergency generators taken from AP-42 Table 3.2-1

 (4) Emission factors for Solar natural gas engines and Caterpillar natural gas emergency generators converted using 1 KWh = 3412 Btu and 1 kw = 1.341 hp

 (5) Emission Factors (lb/MMBtu) for Formaldehyde and Total HAPs for Solar Turbines from Solar PIL 168

Table C-7 Potential Emissions From Fugitive Leaks ACP Northampton Compressor Station - Northampton County, North Carolina

Fugitive Emissions (FUG)

Source Designation:

Operational Parameters:
Annual Hours of Operation (hr/yr):

Compressor Fugitive Emissions Rate

2
ton/con
2.67E

1. Default methane basis and emission factor taken from Table 6-6 of Compendium of Greenbouse Cas Emissions Methoclobegies for the Oil and Cas Industry, API, August 2009.

2. Sample calculations: Hours of operation (11/17)* EF (ton. / compressor-lot) / Methane Fraction

Pipeline Natural Gas Fugitive Emissions

Foultament	Service	Emission Factor ^[1]	H. C.	Total HC Potential Emissions	ıtlai Emissions	VOC Weight	VOC Emissions	CO ₂ Weight	CO ₂ Emissions	CH, Weight	CH, Emissions	HAP Weight	HAP Emissions
	-	lb/ht/source	South County	1b/hr	tpy	Fraction	ipy	Fraction	fpy	Fraction	tpy	Fraction	Ádi
Valves	Sign	4.50E-03	919	291	12.7	0,026	0.334	0.0271	0.345	0.895	11.4	1,485-03	1.88E-02
Compressors	Cas	5.716+01	3	ולו	751	0.026	19.7	0.0271	20.4	0.895	672	1,48E-03	1.11E+00
Pump Scals	Gas	2.40E-03		00'0	0.00	0.026	0.00	1/200	0.00	0.895	00:00	1.48E-03	0.00E+00
Others (compressors and others)	Cass	8.80E-03		0.00	0.00	97070	00:00	0.0271	0.00	0.895	00.00	1.48E-03	0.00E+00
Connectors	Cas	2.00E-04	1	2.00E-04	8.76E-04	0.026	2.30E.05	0.0271	2.38E-05	0.895	7.84E-04	1.48E-03	1.30E-06
Flanges	Cas	3.90E-04	340	0.133	0.581	0.026	0.015	1,720.0	0.016	0.895	0.520	1.485-03	8.59E-04
Open-ended lines	Gas	2.00E-03		0.00	0.00	0.026	0.00	0.0271	0.00	968'0	00'0	1.48E-03	0.00E+00
			Total	174	764		20.0	ю	20.7		683		1.13E+00

1. EFA Protocol for Equipment Louis Emissions Estimate (EFA-453/R-95-017) Table 2-4: Oil and Gas Production Operations Emission Factors.

2. Component count based on Basic Systems Engineering Estimate.

 $\frac{Samrk_Cellolations}{Cellolations} (B/ht) - Emission Factor (B/ht/source)^* Source Count Potential Emissions (torse/yr) = (B/ht)_{source}^* Hours of Operation (ht/yr) × (1 tor/2003 B).$

<u>Table C-8 Tank Emissions</u> ACP Northampton Compressor Station - Northampton County, North Carolina

١	
	TK-2, TK-3
	TK-1
	Source Designation:

Tank Parameters

		,	Capacity	Throughput	Tank Diam.	Tank Length		Paint
Source	1 ype or 1 ank	Contents	(gal)	gal/yr	ft	H H	Paint Color	Condition
TK-1	Horizontal, fixed	Produced Fluids	2,500	12,500	4.61	20	Light Grey	Good
TK-2	Horizontal, fixed	Lube Oil	1,500	7,500	4.12	10	Light Grey	Good

Total Emissions

				VOC Emissions	ions			
Source	Flashing	Flashing Losses	Working Losses	Losses	Breathing Losses	; Losses	Total Losses	Losses
	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	1b/hr	tpy
TK-1 ^[1]		I	1	ŀ	·	1	0.080	0.350
TK-2 ^[2]	NA	NA	7.76E-07	3.40E-06	2.24E-06	9.80E-06	3.01E-06	1,32E-05

Losses were calculated for TK-1 using E&P Tanks Software. See attached for output.
 Losses were calculated for TK-2 using EPA's TANKS 4.09d software with default breather vent settings.
 Losses (Emissions) from TK-3 8,000-gallon Anunonia tank assumed to be insignficant.

<u>Table C-9 Project Potential Emissions</u>
ACP Northampton Compressor Station - Northampton County, North Carolina

		100000		Ü	Criteria Pollutants (tpy	stants (tpy)	3	The second			GHG Emissions (tpv	Sions (tpv)		Ammonia (tpv)	HAP (tov)
Combustion Sources	Q	NOx	တ	NOC	802	PMF	PMF-10	PMF-2.5	PMC	CO2	CH4	NZO	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	CT-01	8.35	13.1	0.775	1.43	2.42	2.42	2.42	5.99	50035	4.00	1.26	50511	5.77	0.525
Solar Centaur 50L Turbine	CT-02	5.20	8.19	0.477	0.894	1.51	1.51	1.51	3.74	31329	2.50	0.788	31627	3.58	0.352
Solar Centaur 40 Turbine	CT-03	4.44	7.29	0.405	0.760	1.29	1.29	1.29	3.18	26747	2.14	0.671	27000	3.02	0.286
Caterpillar G3516 Egen	EG-01	0.312	0.295	0.0375	0.0003	0.0214	0.0214	0.0214	900.0	77.9	0.290	0.0	85.1	0	0.0143
Boiler	WH-01	1.35	2.27	0.149	0.0162	0.0514	0.0514	0.0514	0.154	3246	0.0622	0.0595	3266	0	0.0511
Fugitive Leaks - Blowdowns	FUG-01			18.84		,	ļ .		,	19.49	643		16,092		1.063
Fugitive Leaks - Piping	FUG-02	1		20.0	,	,		,		20.7	683	,	17.106		1.13
Accumulator Tank	TK-1			0.350	,					,		,			
Hydrocarbon (Waste Oil) Tank	TK-2	1		1.32E-05		,	'			ı		,	1		
Total (tons/yr)		19.7	31.1	41.1	3.10	5.3	5.3	5.3	13.1	111,475	1,335	2.78	145,686	12.4	3.42

TK-1 Produced Fluids Tank 081015.txt

Known Separator Stream Entering Air Composition Calculation Method Control Efficiency Pipeline\Draft Rule 13 -Flowsheet Selection Project File : M:\Projects\D\Dominion\Atlantic Coastal Pipeline and Supply Header
APC1\Emission Calcs\TK-1 - Produced Fluids Tank.ept
: Oil Tank with Separator
: AP42
: AP42
: 100.0%
: Low Pressure Gas <u>N</u>

2015.07.13

Date

Separator Pressure : 552.00[psig]
Separator Temperature : 77.00[F]
Molar GOR : 0.0500
Ambient Pressure : 14.70[psia]
Ambient Temperature : 70.00[F]
C10+ SG : 0.8990
C10+ MW : 166.00

18 19	16 17	14 15	131	113	10 0	∞.	76	v	4	ω ~	Н	No.	LOW
-C6 24Tri	E-Benzene Xylenes	Benzene Toluene	C6 C7+	\cap	n-C4 i-C5	0	22		2	02 C02	S	Componen	Pressure Gas
ıуТр													
								9					
0.0000	0.0000	0.0000	0.0320	0.0220		0.0790	лю	4.2	0.9940	0.000C	8	mol %	
	_								_	- •	_		1

TK-1 Produced Fluids Tank 081015.txt

'+ Molar Ratio: C7 : C8 : C9 : C10+ 1.0000 1.0000 1.0000 1.0000	lles Oil	ink and shell Data	rological Data	Page I	ttritititititititititititititititititit	Summary	HAPS 0.010 0.002 HC 0.425 0.097 C2+ 0.383 0.087 C3+ 0.350 0.080	<pre>itrolled Recovery Info.</pre>	Emission Composition
C7+ Molar Ra	שה בד	Tank and shel Diameter Shell Height Cone Roof Slope Average Liquid H Vent Pressure Ra Solar Absorbance	rologi	Page L City Ambient Pressul Ambient Tempers Min Ambient Ter Max Ambient Ter	**************************************	Emission Sur Item	Total HAPs Total HC VOCs, C2+ VOCs, C3+	_ ā_	Emission Co

	Total Emissions mol % 0.5755 0.0000 4.9770 0.3129 25.9849 10.4401 18.4251 5.5234 1.6902 1.4516 0.0892 0.0182 0.0142 0.0016
	s w&S gas mol % 0.1835 0.0000 0.0001 0.0001 16.8782 9.6293 33.6645 11.9899 14.9972 4.1822 3.6780 8P TANK 3.6780 0.2328 0.0486 0.0362 0.0362
081015.txt	Flash Gasmol % 10000
Fluids Tank O	1 Sale Oil mol % 0.0030 0.0000 0.0000 0.0000 0.0000 0.4600 0.6191 3.1320 2.8099 4.8107 4.360 11.1500 11.7774 6.0063 50.1681 0.6057 0.2311 0.0774
Produced Flu	Flash Oil % 0.0349 0.0000 0.0907 0.0005 0.1475 0.1475 0.3531 1.0450 4.4100 3.0997 5.0823 4.2520 10.6043 11.1074 5.6497 47.1217 0.5808 0.2183 0.0729
TK-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LP 0il mol % 0.0508 0.0508 0.0508 0.02437 0.0102 0.9543 0.6701 2.1827 1.1269 4.6091 3.1066 5.0558 4.1769 4.1769 5.0558 6.127 45.9695 0.5685 0.0711
[ton/yr] 0.002 0.002 0.002 0.003 0.033 0.033 0.033 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000	MW 34.80 32.00 44.01 28.01 16.04 30.07 44.10 58.12 72.15 72.15 72.15 86.16 100.20 114.23 128.28 166.00 78.11 92.13
H2S 02 C02 N2 C1 C2 C3 i-C4 i-C5 n-C5 C6 C7 C7 C7 C0 C10+ Benzene Toluene E-Benzene Xylenes n-C6	Stream Data Component H2S 02 C02 C1 C2 C3 i-C4 i-C5 n-C5 C6 C7 C8 C9 C10+ Benzene Toluene E-Benzene
117 117 118 118 118 118 118	N N N N N N N N N N N N N N N N N N N

4
a
0
5

	0.0133	1.1368	0.000		44.0/	0.0312	2368.67	1.52	l i		
			0.000.0	`	63./8	0.0067	3547.91	2.20) -		
)81015.txt	0.0075	0.6694	0000.0	70	38.04	0.0245	2044.13	1.33	•		
					129.50	0.9688			6.19	38.81	0.810
oduced Flu	0.6971	3.6672	0.0000 0.0000 0.0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	120.03	0.9755			19.66	78.89	0.803
TK-1 Pr	0.6802	3.5939	0000.0	00 (17	173.09	٠,			56.28		_
	106.17	86.18	114.24				[BTU/SCF]	[Gas/Air]	[psia]	[psia]	i
	Xylenes	n-c6	224Trimethylp	7-104	Mial	Stream Mole Ratio	Heating Value	Gas Gravity	Bubble Pt. @ 100F	RVP @ 100F	Spec. Gravity @ 100F
	20	21	22								

Tank Indentification and Physical Characteristics **Emissions Report - Detail Format TANKS 4.0.9d**

Identification User Identification:

Horizontal Tank Used Oil Aboveground Storage Tank City: State: Company: Type of Tank: Description:

West Virginia

15.05 4.12 1,500.00 5.00 7,500.00 Tank Dimensions
Shell Length (ft):
Diameter (ft):
Volume (gallons):
Turnovers:
Net Throughput(gallyr):
Is Tank Heated (y/n):
Is Tank Underground (y/n):

Gray/Light Good zz Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) Paint Characteristics Shell Color/Shade: Shell Condition

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

Page 2 of 7

Emissions Report - Detail Format Liquid Contents of Storage Tank TANKS 4.0.9d

TK-2 - Horizontal Tank

Basis for Vapor Pressure	Calculations	
Mol	Weight	200.00
Vapor	Fract.	
Liquid	Fract.	
Vapor Mol.	Weight.	380,0000
(psia)	Max	0.0001
apor Pressure (Min.	0.0001
Vapor	Avg.	0.0001
Liquid Bulk Temp	(deg F)	57.22
urf. 3g F)	Max.	70.18
ily Liquid Surf. perature (deg l	Min	52.97
Da Tem	Avg.	61.57
	Month	W
	Mixture/Component	Used Oil

Page 3 of 7

Emissions Report - Detail Format tail Calculations (AP-42) **TANKS 4.0.9d**

TK-2

	0.0196 127.7971 0.0000 0.0618 1.0000	127.7971 4.1200 8.8875 2.0600 15.0500	0.0000 380.0000 0.0001 521.2427 5.4.0673	10.731 516.8933 0.5400 1,250.5726	0.0618 34.4127 0.0000 0.0600	0.0001	0.0001 521.2427 512.6395 529.8458 21,5333	1,0000	0.0068 380,0000 7,500,0000 5,000 1,0000 4,1200
Applial Emission Calcarlations	Standing Losses (Ib): Vapor Space Volume (cu ft): Vapor Space Expansion Factor: Vapor Space Expansion Factor: Vented Vapor Saturation Factor:	Tank Vapor Space Volume: Vapor Space Volume (cu ft): Tank Damenter (ft): Effective Diameter (ft): Vapor Space Outage (ft): Tank Shell Length (ft):	Vapor Density Vapor Density (Ib/cu ft): Vapor Density (Ib/cu ft): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Daily Average Liquid Garriera Temp (deg. R): Daily Average Americae Temp (deg. R):	Ideal Gas Constant R (psia cuti / (lb-mol-deg R)): Liquid Bulk Temperature (deg. R): Tank Paint Solar Absorptance (Shell): Daliy Total Solar Insulation Factor (Btulsoft day):	Vapor Space Expansion Factor Vapor Space Expansion Factor Daily Vapor Temperature Range (deg. R); Daily Vapor Pressure Range (gisia); Breather Vent Press. Setting Range(psia); Vapor Pressure at Daily Average I jouid	Surface Temperature (psia): Vapor Pressure at Daily Minimum Liquid Surface Temperature (psia):	vapor Pressure at Datiny Maximum Liquo Surface Temperature (psia): Daily Avg. Liquid Surface Temp. (deg R): Daily Min. Liquid Surface Temp. (deg R): Daily Max. Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	Vented Vapor Saturation Factor Vented Vapor Saturation Factor Vapor Pressure at Daily Average Liquid: Surface Temperature (psia): Vapor Space Outage (ft):	Working Losses (Ib): Vapor Molecular Weight (Ib/Ib-mole): Vapor Pressure at Daily Average Liquid Surface Temperature (psia): Annual Nat Throughput (gallyr.): Annual Turnover: Turnover Factor: Tank Diameter (ft):

		Emissi Deta
-2 - Horizontal Tank		
al Emission Calcaulations		
ing Losses (Ib): or Space Volume (cu ft): or Density (Ib/cu ft): for Space Expansion Factor: led Vapor Saturation Factor:	0.0196 127,7971 0.0000 0.0518 1.0000	
Vapor Space Volume: or Space Volume (cu ft): k Diameter (ft): ctive Diameter (ft): ctive Diameter (ft): k Shell Length (ft):	127.7971 4.1200 8.8875 2.0600 15.0500	
r Density or Density (lb/cu ft): or Molecular Weight (lb/lb-mole):	0.0000	
or Pressure at Dally Average Liquid unface Temperature (1938): VAVE Liquid Surface Temp. (deg. R): ly Average Ambient Temp. (deg. F):	0.0001 521.2427 54.9833	
al Gas Constant R Sais cut/ (Ib-nol-deg R)): the def Ut/ Temperature (deg, R): k Paint Solar Absorptance (Shell): y Total Solar Insulation	10,731 516,8933 0,5400	
actor (btu/sqit day);	02/0:002,1	
or Space Expansion Factor: y Vapor Temperature Range (deg. R); y Vapor Pressure Range (psia); ather Vent Press. Setting Range(psia);	0.0618 34.4127 0.0000 0.0600	
or Pressure at Daily Average Liquid urface Temperature (psia):	0.0001	
or Pressure at Daily Minimum Liquid urface Temperature (psia):	0.0001	
or Pressure at Clay Maxmin Liquid urface Temperature (psia); y Avg. Liquid Surface Temp. (deg R); y Max. Liquid Surface Temp. (deg R); y Max. Liquid Surface Temp. (deg R); y Ambient Temp. Range (deg. R);	0.0001 521.2427 512.6395 529.8458 21,5333	
d Vapor Saturation Factor	1,0000	
or Pressure at Daily Average Liquid: urface Temperature (psia): or Space Outage (ff):	0.0001	
ing Losses (lb): oor Molecular Weight (lb/lb-mole):	0.0068	
oor Pressure at Landar Average Liquio Lurdroce Temperature (psia); uual Net Throughput (gal/yr.); uual Turnovers; nover Factor.	0.0001 7,500.0000 5.0000 1.0000 4.1200	

Page 4 of 7

Working Loss Product Factor:

1,0000

Total Losses (lb):

0.0264

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-2 - Horizontal Tank

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Used Oil	0.01	0.02	0.03

TANKS 4.0 Report

APPENDIX D

VENDOR SPECIFICATIONS

Solar Turbines Emissions Estimates Taurus 70-10802S Assumptions: pipeline natural gas, sea level, 4"/4" inlet/outlet losses, nominal performance

50% load									The Asset of					1		
		fuel flow,	Thermal	NOX	NOX	03	03	OHC	OHC	200	200	CO2	PM10/2.5 PM10/2.5		Exhaust	Exhaust Exhaust Flow
Temp, F	H	mmbtu/hr LHV	Eff, %	(mdd)	(Ib/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	lb/mmptu	lb/hr	Temp (F)	(lb/hr)
0	5941	63.54	23.79	6	2.3	25	3.9	25	2.2	2.5	0.2	8321	0.02	1.4	910	199,373
29	5430	26.95	24.27	6	2.0	25	3.4	25	2.0	2.5	0.2	7407	0.02	1.3	991	170,275
100	4341	49.58	22.28	6	1.7	25	3.0	25	1.7	2.5	0.2	6336	0.02	1.1	1045	149576
75% load															The second second	
		fuel flow,	Thermal	NOX	NOX	00	00	OHC	OHO	VOC	VOC	C02	PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
Temp, F	НР	mmbtu/hr LHV	Eff, %	(mdd)	(Ib/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	lb/mmptn	lb/hr	Temp (F)	(lb/hr)
0	8912	76.91	29.49	6	2.8	25	4.7	25	2.7	2.5	0.3	10063	0.02	1.7	898	224,735
59	8145	68.47	30.27	6	2.5	25	4.2	25	2.4	2.5	0.2	8905	0.02	1.5	957	194,658
100	6512	59.08	28.05	6	2.1	25	3.5	25	2.0	2.5	0.2	7544	0.02	1.3	1019	165855
100% load		The state of the s		100000000000000000000000000000000000000		Section 2										
		fuel flow.	Thermal	×ON	NOX	00	O	UHC	UHC	VOC	VOC	C02	PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
Temp, F	НР	mmbtu/hr LHV	Eff, %	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	Ib/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	11882	87.27	34.64	6	3.2	25	5.3	25	3.1	2.5	0.3	11411	0.02	1.9	864	366,922
29	10860	79.24	34.87	6	2.8	25	4.8	25	2.8	2.5	0.3	10301	0.02	1.7	806	334,207
100	8683	68.40	32.30	6	2.4	25	4.1	25	2.3	2.5	0.2	8730	0.02	1.5	945	298619

Solar Turbines Emissions Estimates Centaur 50-6200LS Assumptions: pipeline natural gas, 150' elevation, 5"/8" inlet/outlet losses, nominal performance

20% load											THE REAL PROPERTY.	Section Section		The second second		
Temp. F	4	fuel flow,	Thermal Eff. %	XON (mda)	NOX (lb/hr)	CO	CO	UHC	UHC (Ih/hr)	VOC	VOC	CO2	PM10/2.5	PM10/2.5	Exhaust Temn (F)	Exhaust Flow
0	3321	39.27	21.54	6	1.4	25	2.4	25	14	2.5	0 1	5155	0.02	60	837	139.384
29	3006	35.20	21.73	6	6.	25	2.1	25	1.2	2.5	0.1	4591	0.02	0.8	915	119,683
100	2426	30.76	20.06	o	1.1	25	1.8	25	1.0	2.5	0.1	3938	0.02	0.7	996	103305
75% load									Name of the last		Total Control	The second	THE REAL PROPERTY.			
		fuel flow,	Thermal	NOX	NOX	03	8	OHC	OHC	VOC	VOC	C02	PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
Temp, F	H	mmbtu/hr LHV	Eff, %	(mdd)	(Ib/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	lb/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	4981	47.21	26.85	മ	1.7	25	2.9	25	1.6	2.5	0.2	6189	0.02	1.0	849	152,889
69	4509	42.05	27.29	6	1.5	25	2.5	25	1.5	2.5	0.2	5479	0.02	6.0	908	133,124
100	3639	36.70	25.23	6	1.3	25	2.2	25	1.2	2.5	0.1	4695	0.02	0.8	959	115664
100% load										The same of						
		first flow	Thomas	2014	1014	0	2	Oi iii	01111	201	201	000	D844010 F	7 01070	1	10.0
Temp, F	유	mmbtu/hr LHV	Eff, %	(ppm)	(lb/hr)	G (mgd	(lb/hr)	(ppm)	(lb/hr)	(mdd)	(lb/hr)	Ib/hr	Ib/mmbtu	Ib/hr	Temp (F)	(Ib/hr)
0	6642	54.55	30.98	6	2.0	25	3.3	25	1.9	2.5	0.2	7145	0.02	1.2	871	161,184
59	6012	50.72	30.16	6	1.8	25	3.1	25	1.7	2.5	0.2	6803	0.02	1.1	926	144,840
100	4852	44.43	27.78	6	1.6	25	5.6	25	1.5	2.5	0.2	5679	0.02	1.0	1004	127484

Solar Turbines Emissions Estimates Centaur 40-4700S Assumptions: pipeline natural gas, sea level, 4"/4" inlet/outlet losses, nominal performance

## mmbtu/hr LHV Eff, % 2511 32.29 19.78 2278 29.85 19.41 1735 26.09 16.92 ##P mmbtu/hr LHV Eff, % 3767 39.31 24.39 3417 35.41 24.55 2602 30.78 21.51 fuel flow, Thermal ##P mmbtu/hr LHV Eff, %	7	XON	00	8	SHC CHC	OHO	200	200	C02	PM10/2.5 PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
2278 29.85 19.41 1735 26.09 16.92 16.92 1735 26.09 16.92 16.92 1735 36.09 16.92 1735 39.31 24.39 1747 35.41 24.55 1750 30.78 21.51 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750	30	(Ib/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	1b/mmbtu	lb/hr	Temp (F)	(lb/hr)
1735 26.09 16.92 1735 26.09 16.92 16.92 1735 16.09 16.92 16.92 1737 39.31 24.39 3767 39.31 24.55 2602 30.78 17.6 16.91 18.6 16.94 19.7 16.10 19	67	3.2	20	3.9	25		2.5	0.1	4259	0.02	0.7	726	140,550
tuel flow, Thermal HP mmbtu/hr LHV Eff, % 3767 39.31 24.39 34.7 35.41 24.55 2602 30.78 21.51 fuel flow, Thermal HP mmbtu/hr LHV Eff, % 20.50 20.	25	3.0	20	3.6	25	1.0	2.5	0.1	3911	0.02	0.7	818	122.244
## fuel flow, Thermal HP mmbtu/hr LHV Eff, % 3767 39.31 24.39 34.17 35.41 24.55 2602 30.78 21.51 fuel flow, Thermal HP mmbtu/hr LHV Eff, % 20.50 25.50	25	2.6	20	3.1	25	0.9	2.5	0.1	3355	0.02	9.0	876	106980
#P mmbtu/hr LHV Eff, % 3767 39.31 24.39 3417 35.41 24.55 2602 30.78 21.51 fuel flow, Thermal HP mmbtu/hr LHV Eff, %													
3767 39.31 24.39 3417 35.41 24.55 2602 30.78 21.51 fuel flow, Thermal	NOX	NOX	8	8	OHC	UHC	VOC	Yoc	C02	PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
367 39.31 24.39 3417 35.41 24.55 2602 30.78 21.51 fuel flow, Thermal	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	lb/mmbtu	lb/hr	Temp (F)	(lb/hr)
35.41 24.55 2602 30.78 21.51 fuel flow, Thermal HP mmbtu/hr LHV Eff, %		3.9	20	4.8	25	1.4	2.5	0.1	5177	0.02	6.0	736	156,668
fuel flow, Thermal HP mmbtw/hr LHV Eff, %		3.5	20	4.3	25	1.2	2.5	0.1	4635	0.02	9.0	810	136,464
fuel flow, Thermal HP mmbtu/hr LHV Eff, %	25	3.0	20	3.7	25	1.0	2.5	0.1	3955	0.02	0.7	873	117366
fuel flow, Thermal HP mmbtu/hr LHV Eff,%													
HP mmbtu/hr LHV Eff, %	I NOx	NOx	8	8	UHC	CHC	VOC	VOC	C02	PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
10000 10000	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	lb/mmptu	lb/hr	Temp (F)	(lb/hr)
3023 40.39 30.23	25	4.7	20	5.7	25	1.6	2.5	0.2	6100	0.02	1.0	779	164,995
4556 42.27 29.51	25	4.2	20	5.1	25	1.5	2.5	0.2	5526	0.02	6.0	840	148,793
100 3470 35.07 27.45		3.4	20	4.2	25	1.2	2.5	0.1	4503	0.02	0.8	873	127331

6 June 2012

SoLoNOx Products: Emissions in Non-SoLoNOx Modes

Leslie Witherspoon

Solar Turbines Incorporated

PURPOSE

Solar's gas turbine dry low NOx emissions combustion systems, known as $SoLoNOx^{\intercal}$, have been developed to provide the lowest emissions possible during normal operating conditions. In order to optimize the performance of the turbine, the combustion and fuel systems are designed to reduce NOx, CO and unburned hydrocarbons (UHC) without penalizing stability or transient capabilities. At very low load and cold temperature extremes, the SoLoNOx system must be controlled differently in order to assure stable operation. The required adjustments to the turbine controls at these conditions cause emissions to increase.

The purpose of this Product Information Letter is to provide emissions estimates, and in some cases warrantable emissions for NOx, CO and UHC, at off-design conditions.

Historically, regulatory agencies have not required a specific emissions level to be met at low load or cold ambient operating conditions, but have asked what emissions levels are expected. The expected values are necessary to appropriately estimate emissions for annual emissions inventory purposes and for New Source Review applicability determinations and permitting.

COLD AMBIENT EMISSIONS ESTIMATES

Solar's standard temperature range warranty for gas turbines with SoLoNOx combustion is $\geq 0^{\circ}F$ ($-20^{\circ}C$). The $Titan^{TM}$ 250 is an exception, with a lower standard warranty at $\geq -20^{\circ}F$ ($-29^{\circ}C$). At ambient temperatures below $0^{\circ}F$, many of Solar's turbine engine models are controlled to increase pilot fuel to improve flame stability and emissions are higher. Without the increase in pilot fuel at temperatures below $0^{\circ}F$ the engines may exhibit combustor rumble, as operation may be near the lean stability limit.

If a cold ambient emissions warranty is requested, a new production turbine configured with the latest combustion hardware is required. For most models this refers to the inclusion of Cold Ambient Fuel Control Logic.

Emissions warranties are not offered for ambient temperatures below -20°F (-29°C). In addition, cold ambient emissions warranties cannot be offered for the *Centaur*® 40 turbine.

Table 1 provides expected and warrantable (upon Solar's documented approval) emissions levels for Solar's SoLoNOx combustion turbines. All emissions levels are in ppm at 15% O_2 . Refer to Product Information Letter 205 for $Mercury^{TM}$ 50 turbine emissions estimates.

For information on the availability and approvals for cold ambient temperature emissions warranties, please contact Solar's sales representatives.

Table 2 summarizes "expected" emissions levels for ambient temperatures below 0°F (-20°C) for Solar's SoLoNOx turbines that do not have current production hardware or for new production hardware that is not equipped with the cold ambient fuel control logic. The emissions levels are extrapolated from San Diego factory tests and may vary at extreme temperatures and as a result of variations in other parameters, such as fuel composition, fuel quality, etc.

For more conservative NOx emissions estimate for new equipment, customers can refer to the New Source Performance Standard (NSPS) 40CFR60, subpart KKKK, where the allowable NOx emissions level for ambient temperatures < 0°F (-20°F) is 150 ppm NOx at 15% O₂. For pre-February 18, 2005, SoLoNOx combustion turbines subject to 40CFR60 subpart GG, a conservative estimate is the appropriate subpart GG emissions level. Subpart GG levels range from 150 to 214 ppm NOx at 15% O₂ depending on the turbine model.

Table 3 summarizes emissions levels for ambient temperatures below –20°F (–29°C) for the *Titan* 250.

Table 1. Warrantable Emissions Between 0°F and -20°F (-20° to -29°C) for New Production

Turbine Model	Fuel System	Fuel	Applicable Load	NOx, ppm	CO,	UHC, ppm
Centaur 50	Gas Only	Gas	50 to 100% load	42	100	50
Oernaur 50	Dual Fuel	Gas	50 to 100% load	72	100	50
Taurus™ 60	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Taurus 65	Gas Only	Gas	50 to 100% load	42	100	50
Taurus 70	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Mars® 90	Gas Only	Gas	50 to 100% load	42	100	50
Mars 100	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Titan 130	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Titan 250	Gas Only	Gas	40 to 100% load	25	50	25
11la11 250	Gas Only	Gas	40 to 100% load	15	25	25
Centaur 50	Dual Fuel	Liquid	65 to 100% load	120	150	75
Taurus 60	Dual Fuel	Liquid	65 to 100% load	120	150	75
Taurus 70	Dual Fuel	Liquid	65 to 100% load	120	150	75
Mars 100	Dual Fuel	Liquid	65 to 100% load	120	150	75
Titan 130	Dual Fuel	Liquid	65 to 100% load	120	150	75

Turbine **Applicable** NOx, CO. UHC. **Fuel System** Fuel Model Load ppm ppm ppm Centaur 40 Gas Only or Dual Fuel Gas 80 to 100% load 120 150 50 Gas Only Gas 50 to 100% load 120 150 50 Centaur 50 Dual Fuel 50 to 100% load 120 Gas 150 50 Taurus 60 Gas Only or Dual Fuel 120 Gas 50 to 100% load 150 50 Taurus 65 Gas Only Gas 50 to 100% load 120 150 50 Taurus 70 Gas Only or Dual Fuel Gas 50 to 100% load 120 150 50 Mars 90 Gas Only Gas 120 150 80 to 100% load 50 Mars 100 Gas Only or Dual Fuel Gas 50 to 100% load 120 150 50 Titan 130 Gas Only or Dual Fuel Gas 50 to 100% load 120 150 50 Centaur 40 **Dual Fuel** 80 to 100% load 120 150 75 Liquid Centaur 50 **Dual Fuel** 65 to 100% load 120 75 Liquid 150 Taurus 60 **Dual Fuel** 65 to 100% load 120 150 Liquid 75 Taurus 70 **Dual Fuel** Liquid 65 to 100% load 120 150 75 Mars 100 **Dual Fuel** 120 Liquid 65 to 100% load 150 75 Titan 130 **Dual Fuel** Liquid 65 to 100% load 120 150 75

Table 2. Expected Emissions below 0°F (-20°C) for SoLoNOx Combustion Turbines

Table 3. Expected Emissions below –20°F (–29°C) for the Titan 250 SoLoNOx Combustion Turbine

Turbine Model	Fuel System	Fuel	Applicable Load	NOx, ppm	CO,	UHC, ppm
Titan 250	Gas Only	Gas	40 to 100% load	70	150	50

COLD AMBIENT PERMITTING STRATEGY

There are several permitting options to consider when permitting in cold ambient climates. Customers can use a tiered permitting approach or choose to permit a single emission rate over all temperatures. Historically, most construction and operating permits were silent on the ambient temperature boundaries for *SoLoNOx* operation.

Some customers have used a tiered permitting strategy. For purposes of compliance and annual emissions inventories, a digital thermometer is installed to record ambient temperature. The amount of time is recorded that the ambient temperature falls below 0°F. The amount of time below 0°F is then used with the emissions estimates shown in Tables 1 and 2 to estimate "actual" emissions during sub-zero operation.

A conservative alternative to using the NOx values in Tables 1, 2 and 3 is to reference 40CFR60 subpart KKKK, which allows 150 ppm NOx at 15% O₂ for sub-zero operation.

For customers who wish to permit at a single emission rate over all ambient temperatures, inlet air heating can be used to raise the engine inlet air temperature (T_1) above 0°F. With inlet air heating to keep T_1 above 0°F, standard emission warranty levels may be offered.

Inlet air heating technology options include an electric resistance heater, an inlet air to exhaust heat exchanger and a glycol heat exchanger.

If an emissions warranty is desired and ambient temperatures are commonly below $-20^{\circ}F$ ($-29^{\circ}C$), inlet air heating can be used to raise the turbine inlet temperature (T_1) to at least $-20^{\circ}F$. In such cases, the values shown in Table 1 can be warranted for new production.

EMISSIONS ESTIMATES IN NON-SOLONOX MODE (LOW LOAD)

At operating loads < 50% (<40% load for the *Titan* 250) on natural gas fuel and < 65% (< 80% load for *Centaur* 40) on liquid fuels, *SoLoNOx* engines are controlled to increase stability and transient response capability. The control steps that are required affect emissions in two ways: 1) pilot fuel flow is increased, increasing NOx emissions, and 2) airflow through the combustor is increased, increasing CO emissions. Note that the load levels are approximate. Engine controls are triggered either by power output for single-shaft engines or gas producer speed for two-shaft engines.

A conservative method for estimating emissions of NOx at low loads is to use the applicable NSPS: 40CFR60 subpart GG or KKKK. For projects that commence construction after February 18, 2005, subpart KKKK is the applicable NSPS and contains a NOx level of 150 ppm @ 15% O₂ for operating loads less than 75%.

Table 4 provides estimates of NOx, CO, and UHC emissions when operating in non-SoLoNOx mode for natural gas or liquid fuel. The estimated emissions can be assumed to vary linearly as load is decreased from just below 50% load for natural gas (or 65% load for liquid fuel) to idle.

The estimates in Table 4 apply for any product for gas only or dual fuel systems using pipeline quality natural gas. Refer to Product Information Letter 205 for *Mercury* 50 emissions estimates.

Table 4. Estimated Emissions in non-SoLoNOx Mode

Ambient	Fuel System	Engine Load	NOx, ppm	CO, ppm	UHC, ppm
	Centaur 40/50, 7	Taurus 60/65/70, M	ars 90/100, T	itan 130	
≥ -20°F (-29°C)	Natural Gas	Less than 50%	70	8,000	800
2-201 (-29 0)	Natural Gas	Idle	50	10,000	1,000
< -20°F (-29°C)	Natural Gas	Less than 50%	120	8,000	800
\ -20 F (-29 C)	Natural Gas	Idle	120	10,000	1,000
		Titan 250			
≥ –20°F (–29°C)	Natural Gas	Less than 40%	50	25	20
2 -20 F (-29 C)	Ivaluiai Gas	Idle	50	2,000	200
< 20°E (20°C)	Natural Gas	Less than 40%	70	150	50
< –20°F (–29°C)	Natural Gas	Idle	70	2,000	200
	Centaur 50,	Taurus 60/70, Mai	rs 100, Titan	130	
≥ –20°F (–29°C)	Liquid	Less than 65%	120	1,000	100
2 -20 F (-29 C)	Liquid	Idle	120	10,000	3,000
< 20°E (20°C)	Liquid	Less than 65%	120	1,000	150
< –20°F (–29°C)	Liquid	Idle	120	10,000	3,000
		Centaur 40			
> 20°E / 20°C)	Liquid	Less than 80%	120	1,000	100
≥ –20°F (–29°C)	Liquid	Idle	120	10,000	3,000
< 20°E / 20°C)	Liquid	Less than 80%	120	1,000	150
< –20°F (–29°C)	Liquid	Idle	120	10,000	3,000

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc.

Solar, Titan, Mercury, Mars, Centaur and SoLoNOx are trademarks of Solar Turbines Incorporated. Specifications subject to change without notice. Printed in U.S.A.

Volatile Organic Compound, Sulfur Dioxide, and Formaldehyde Emission Estimates

Leslie Witherspoon Solar Turbines Incorporated

PURPOSE

This Product Information Letter summarizes methods that are available to estimate emissions of volatile organic compounds (VOC), sulfur dioxide (SO₂), and formaldehyde from gas turbines. Emissions estimates of these pollutants are often necessary during the air permitting process.

INTRODUCTION

In absence of site-specific or representative source test data, Solar refers customers to a United States Environmental Protection Agency (EPA) document titled "AP-42" or other appropriate EPA reference documents. AP-42 is a collection of emission factors for different emission sources. The emission factors found in AP-42 provide a generally accepted way of estimating emissions when more representative data are not available. The most recent version of AP-42 (dated April 2000) can be found at:

http://www.epa.gov/ttn/chief/ap42/ch03/index.html

Solar does not typically warranty the emission rates for VOC, SO₂ or formaldehyde.

Volatile Organic Compounds

Many permitting agencies require gas turbine users to estimate emissions of VOC, a subpart of the unburned hydrocarbon (UHC) emissions, during the air permitting process. Volatile organic compounds, non-methane hydrocarbons (NMHC), and reactive organic gases (ROG) are some of the many ways of referring to the non-methane (and non-ethane) portion of an "unburned hydrocarbon" emission estimate.

For natural gas fuel, Solar's customers use 10-20% of the UHC emission rate to represent VOC

emissions. The estimate of 10-20% is based on a ratio of total non-methane hydrocarbons to total organic compounds. The use of 10-20% provides a conservative estimate of VOC emissions. The balance of the UHC is assumed to be primarily methane.

For liquid fuel, it is appropriate to estimate that 100% of the UHC emission estimate is VOC.

Sulfur Dioxide

Sulfur dioxide emissions are produced by conversion of sulfur in the fuel to SO_2 . Since Solar does not control the amount of sulfur in the fuel, we are unable to predict SO_2 emissions without a site fuel composition analysis. Customers generally estimate SO_2 emissions with a mass balance calculation by assuming that any sulfur in the fuel will convert to SO_2 . For reference, the typical mass balance equation is shown below.

Variables: wt % of sulfur in fuel Btu/lb fuel (LHV*) MMBtu/hr fuel flow (LHV)

$$\frac{\text{lb SO}_2}{\text{hr}} = \left(\frac{\text{wt\% Sulfur}}{100}\right) \left(\frac{\text{lb fuel}}{\text{Btu}}\right) \left(\frac{10^6 \text{ Btu}}{\text{MMBtu}}\right) \left(\frac{\text{MMBtu fuel}}{\text{hr}}\right) \left(\frac{\text{MW SO}_2}{\text{MW Sulfur}}\right)$$

As an alternative to the mass balance calculation, EPA's AP-42 document can be used. AP-42 (Table 3.1-2a, April 2000) suggests emission factors of 0.0034 lb/MMBtu for gas fuel (HHV*) and 0.033 lb/MMBtu for liquid fuel (HHV).

*LHV = Lower Heating Value; HHV = Higher Heating Value

Formaldehyde

In gas turbines, formaldehyde emissions are a result of incomplete combustion. Formaldehyde

PIL 168, Rev 4 1 14 May 2012

in the exhaust stream is unstable and very difficult to measure. In addition to turbine characteristics including combustor design, size, maintenance history, and load profile, the formaldehyde emission level is also affected by:

- Ambient temperature
- Humidity
- Atmospheric pressure
- Fuel quality
- Formaldehyde concentration in the ambient air
- Test method measurement variability
- Operational factors

The emission factor data in Table 1 is an excerpt from an EPA memo: "Revised HAP Emission

Factors for Stationary Combustion Turbines, 8/22/03." The memo presents hazardous air pollutant (HAP) emission factor data in several categories including: mean, median, maximum, and minimum. The emission factors in the memo are a compilation of the HAP data EPA collected during the Maximum Achievable Control Technology (MACT) standard development process. The emission factor documentation shows there is a high degree of variability in formaldehyde emissions from gas turbines, depending on the manufacturer, rating size of equipment, combustor design, and testing events. To estimate formaldehyde emissions from gas turbines, users should use the emission factor(s) that best represent the gas turbines actual / planned operating profile. Refer to the memo for alternative emission factors.

Table 1. EPA's Total HAP and Formaldehyde Emission Factors for <50 MW Lean-Premix Gas Turbines burning Natural Gas

(Source: Revised HAP Emission Factors for Stationary Combustion Turbines, OAR-2002-0060, IV-B-09, 8/22/03)

Pollutant	Engine Load	95% Upper Confidence of Mean, Ib/MMBtu HHV	95% Upper Confidence of Data, lb/MMBtu HHV	Memo Reference
Total HAP	> 90%	0.00144	0.00258	Table 19
Total HAP	All	0.00160	0.00305	Table 16
Formaldehyde	> 90%	0.00127	0.00241	Table 19
Formaldehyde	All	0.00143	0.00288	Table 16

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc. Solar is a trademark of Solar Turbines Incorporated. Specifications subject to change without notice. Printed in U.S.A. © 2008 Solar Turbines Incorporated. All rights reserved.

PIL 168, Rev 4 2 14 May 2012

Emission Estimates at Start-up, Shutdown, and Commissioning for SoLoNOx Combustion Products

Leslie Witherspoon
Solar Turbines Incorporated

PURPOSE

The purpose of this Product Information Letter (PIL) is to provide emission estimates for start-up and shutdown events for $Solar^{\mathbb{B}}$ gas turbines with $SoLoNOx^{\mathsf{TM}}$ dry low emissions combustion systems. The commissioning process is also discussed.

INTRODUCTION

The information presented in this document is representative for both generator set (GS) and compressor set/mechanical drive (CS/MD) combustion turbine applications. Operation of duct burners and/or any add-on control equipment is not accounted for in the emissions estimates. Emissions related to the start-up, shutdown, and commissioning of combustion turbines will not be guaranteed or warranted.

Combustion turbine start-up occurs in one of three modes: cold, warm, or hot. On large, utility size, combustion turbines, the start-up time varies by the "mode". The start-up duration for a hot, warm, or cold *Solar* turbine is less than 10 minutes in simple-cycle and most combined heat and power applications.

Heat recovery steam generator (HRSG) steam pressure is usually 250 psig or less. At 250 psig or less, thermal stress within the HRSG is minimized and, therefore, firing rampup is not limited. However, some combined heat and power plant applications will desire or dictate longer start-up times, therefore emissions assuming a 60-minute start are also estimated.

A typical shutdown for a *Solar* turbine is <10 minutes. Emissions estimates for an elongated shutdown, 30-minutes, are also included.

Start-up and shutdown emissions estimates for the *Mercury*™ 50 engine are found in PIL 205.

For start-up and shutdown emissions estimates for conventional combustion turbines, landfill gas, digester gas, or other alternative fuel applications, contact Solar's Environmental Programs Department.

START-UP SEQUENCE

The start-up sequence, or getting to SoLoNOx combustion mode, takes three steps:

- 1. Purge-crank
- 2. Ignition and acceleration to idle
- 3. Loading / thermal stabilization

During the "purge-crank" step, rotation of the turbine shaft is accomplished with a starter motor to remove any residual fuel gas in the engine flow path and exhaust. During "igni-

tion and acceleration to idle," fuel is introduced into the combustor and ignited in a diffusion flame mode and the engine rotor is accelerated to idle speed.

The third step consists of applying up to 50% load while allowing the combustion flame to transition and stabilize. Once 50% load is achieved, the turbine transitions to SoLoNOx combustion mode and the engine control system begins to hold the combustion primary zone temperature and limit pilot fuel to achieve the targeted nitrogen oxides (NOx), carbon monoxide (CO), and unburned hydrocarbons (UHC) emission levels.

Steps 2 and 3 are short-term transient conditions making up less than 10 minutes.

SHUTDOWN PROCESS

Normal, planned cool down/shutdown duration varies by engine model. The *Centaur*[®] 40, *Centaur* 50, *Taurus*[™] 60, and *Taurus* 65 engines take about 5 minutes. The *Taurus* 70, *Mars*[®] 90 and 100, *Titan*[™] 130 and *Titan* 250 engines take about 10 minutes. Typically, once the shutdown process starts, the emissions will remain in *SoLoNOx* mode for approximately 90 seconds and move into a transitional mode for the balance of the estimated shutdown time (assuming the unit was operating at full-load).

START-UP AND SHUTDOWN EMISSIONS ESTIMATES

Tables 1 through 5 summarize the estimated pounds of emissions per start-up and shut-down event for each product. Emissions estimates are presented for both GS and CS/MD applications on both natural gas and liquid fuel (diesel #2). The emissions estimates are calculated using empirical exhaust characteristics.

COMMISSIONING EMISSIONS

Commissioning generally takes place over a two-week period. Static testing, where no combustion occurs, usually requires one week and no emissions are expected. Dynamic testing, where combustion will occur, will see the engine start and shutdown a number of times and a variety of loads will be placed on the system. It is impossible to predict how long the turbine will run and in what combustion / emissions mode it will be running. The dynamic testing period is generally followed by one to two days of "tune-up" during which the turbine is running at various loads, most likely within low emissions mode (warranted emissions range).

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc.

Solar, Titan, Mars, Taurus, Mercury, Centaur, Saturn, SoLoNOx, and Turbotronic are trademarks of Solar Turbines Incorporated. All other trademarks are the intellectual property of their respective companies. Specifications are subject to change without notice.

PIL 170 Revision 5 2 13 June 2012

¹ 40% load for the *Titan* 250 engine on natural gas. 65% load for all engines on liquid fuel (except 80% load for the *Centaur* 40).

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx Generator Set Applications 10 Minute Start-up and 10 Minute Shutdown Natural Gas Fuel Table 1.

Data will NOT be warranted under any circumstances

	Cent	Centaur 40 4701S	7015		Cent	Centaur 50 6201S	015		Taur	Taurus 60 7901S	315		Taur	Taurus 65 8401S	918	
	NOx	တ	OHN	C02	NOx	8	OHC	200	NOX	8	UHC	C02	NOX	8	UHC	C02
	(lps)	(sq)	(lbs)	(Ibs)	(lps)	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lps)	(Ips)	(lbs)
Total Emissions per Start (Ibs)	9.0	58.1	3.3	359	8.0	75.0	4.3	454		0.8 78.5	5 4.5 4	482	6.0	85.8	4.9	523
Total Emissions per Shutdown (lbs)	0.3	25.5	1.5	160	0.4	31.1	1.8	194	0.4	34.7	2.0	217	0.4	38.2	2.2	737

	Taur	Taurus 70 10801S	015		Mars 9	Mars 90 13002S GSC	GSC		Mars 10	Mars 100 160025 GSC	GSC		Titan	Titan 130 205015	15		Titan	Titan 250 30002S	25	
	NOx	8	со инс соз	C02	NOx	00	UHC	C02	NOx	8	UHC	C02	NOx	9	UHC	C02	lô	n 00	OHC	7 0 0 0 0
	(sql)	(lbs) (lbs)	(lps)	(Ibs)	(lbs) (i	ps)	ps)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs) 1.1 103.9	1.1	103.9	5.9	634	634 1.4 129.0	129.0	7.4 868 1.6 151.2 8.6	868	1.6	151.2	8.6	952	2.1	195.6	952 2.1 195.6 11.2 1,194 2.5 22.7 1.5 1,925	1,194	2.5	1.12	1.5	1,925
Total Emissions per Shutdown (lbs) 1.3	1.3	110.7	6.3	689		1.7 147.9	8.4	912	912 1.9 166.8	166.8	9.5	1,026	2.4	210.0	9.5 1,026 2.4 210.0 12.0 1,303 3.0 19.9 1.5 1,993	1,303	3.0	19.9	1.5	1,993

Assumes ISO conditions: 59F, 60% RH, sea level, no losses

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx Generator Set Applications 60 Minute Start-up and 30 Minute Shutdown Table 2.

Natural Gas Fuel

Data will NOT be warranted under any circumstances

	Cent	entaur 40 4701S	7015		Cente	Centaur 50 6201S	015		Taur	Taurus 60 7901S	J1S		Taur	Taurus 65 8401S	MS	
	×ON	8	OHC	C02	NOX	00	OHC	C02	NOx	9	UHC	C02	NOx	83	CHC	C02
	(lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	(Bs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(sql)	(sq)	(Ibs)	(lbs)	(lbs)
Total Emissions per Start (Ibs)	4.1	219.4	13.0	13.0 3,420		5.0 272.4	16.1	4,219	16.1 4,219 5.7 299.8	299.8		4,780	6.1	17.8 4,780 6.1 326.5 19.3	19.3	5,074
Total Emissions per Shutdown (lbs)	1.8	121.1		7.1 1.442	2.3 163.3	163.3		1.834	9.5 1.834 2.5 163.5 9.6 1.994	163.5	9.6	1.994	2.6	2.6 177.2 10.4 2.119	10.4	2.119

	1	20 AZ	2000			A 4200	36			000 4500			1.14	4200 2050			75.4	שכט שטטט		
	1 20	1 autus /0 100013	2010		Mal	Mais 30 130023	3	-	Mars	Mars 100 160025	27		I CZI	STUCUZ UST USDITS	2		IKAN	I ITAIN 250 SWU025	22	
	NOX	8	СО ИНС	C02	NOX	ខ	OHC	C02	NOx	03	UHC	C02	NOX	8	UHC	C02	NOx	00	UHC	C02
	(lbs)	(lbs) (lbs)	(lbs)	(lbs)	(sql)	(lbs)	(Ilbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	(lbs)	lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs) 7.6 410.3 24.2 6,164	7.6	410.3	24.2	6,164	10.5	570.8	33.7 8,641	8,641	11.3	583.5	34.6	9,691	13.8	740.4	43.8	11,495	583.5 34.6 9,691 13.8 740.4 43.8 11,495 14.6	75.5	75.5 7.3 16,253	16,253
Total Emissions per Shutdown (Ibs) 3.3 223.0 13.0 2,588	3.3	223.0	13.0	2,588	4.3	4.3 277.0	16.2 3,685	3,685	4.8	4.8 308.1	18.0	4,056	0.9	4,056 6.0 405.3 23.7 4.826	23.7	4.826	6.2	6.2 52.6 4.1 7.222	4.1	7.222
		1				1			-											ı

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx CS/MD Applications 10 Minute Start-up and 10 Minute Shutdown Table 3.

Natural Gas Fuel

Data will NOT be warranted under any circumstances

	Cen	Centaur 40 47025	025		Cent	Centeur 50 61025	125		Tau	Taurus 60 7802S	25	
	NOx	8	UHC	C02	NOX	ខ	CO UHC CO2	C02	NOx	00	UHC	C02
	(lbs)	(lbs)	(Ibs)	(lbs) (lbs)	(lbs) (lbs) (lbs)	(lbs)	(lbs)	(Ips)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (Ibs) 0.7	1.0	64.4	64.4 3.7		392 0.8	8 69.1 4.0	4.0	469	469 0.7	64.3	3.7	410
Total Emissions per Shutdown (fbs)	0.3	0.3 30.2	1.7	181	181 0.4 35.4	35.4	2.0	717	217 0.4 33.0	33.0	1.9	204

																		3		
	Tau	Taurus 70 103025	025		Mars 96	Mars 90 13002S CSMD	SMD		Mars 100	Mars 100 16002S CSMD	SIMD		Tittan	Titan 130 20502S	Si		Titan	Titan 250 30002S	S	
	NOX	00	NOx CO UHC CO2	C02	NOX	00	UHC	C02	NOx	00	OHC	C02	NOX	ខ	꾦	C02	NOx	8	UHC	C02
S. C. C. C. S.	(lbs)	(lbs)	(sq)	(lbs)	(lbs)	(sqt)	(lbs)	(Lps)	(sql)	lbs)	(lps)	(Ibs)	(lbs)	(sql)	(lbs)	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs) 0.8	0.8	73.1	73.1 4.2	519	1.2	109.3	6.2	805	1.4	123.5	7.1	828	829 1.9 176.9	176.9	10.1	1,161	2.6	26.2	1.7	1,794
			50 5 60	1.89																
Total Emissions ner Shittlown (Ibs) 1.1 93.4 5.3	44	A 5.0	5.3	5775	1.5	13.05	7.6	847		7 149.2	2 8	000		2.4 207.6	11.9	11.9 1.777		7.91	1.4	1.4 1.918

1,918

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx Generator Set 10 Minute Start-up and 10 Minute Shutdown Table 4.

Data will NOT be warranted under any circumstances

Liquid Fuel (Diesel #2)

	Cent	Centaur 40 4701S	7018		Cent	Centaur 50 6201S	1018		Tau	Taurus 60 7901S	015	
	NOx	00	OHO	C02	NOx	00	OHC	C02	×ON	00	UHC	C02
	(sql)	(sql)	(sqj)	(sql)	(lbs)	(sq)	(Ibs)	(Ilbs)	(sq)	(sq)	(sqp)	(sqj)
Total Emissions per Start (lbs)	1.3	44.5	7.4	473	1.7	59.0	8.6	601	1.7	59.8	6.6	636
Total Emissions per Shutdown (lbs)	9.0	17.3	2.8	211	7.0	21.2	3.4	256	8.0	23.5	3.8	286

	Taur	Taurus 70 10801S	018		Mars 1	Mars 100 16002S GSC	S GSC		Titaı	Titan 130 20501S	015	
	NOx	00	UHC	C02	NOx	00	UHC	C02	NOx	00	UHC	C02
	(sq)	(sql)	(sq)	(lbs)	(Ibs)	(sql)	(sql)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs)	2.3	78.5	13.0	823	3.4	114.1	18.8	1,239	4.3	147.5	24.4	1,547
Total Emissions per Shutdown (lbs)	2.5	73.6	12.0	888	3.8	111.4	18.1	1,331	4.7	139.1	22.6	1,677

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes #2 Diesel fuel; ES 9-98 compliant.

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx Generator Set 60 Minute Start-up and 30 Minute Shutdown Table 5.

Liquid Fuel (Diesel #2)

Data will NOT be warranted under any circumstances

	Cent	Centaur 40 4701S	701S		Cent	Centaur 50 6201S	1015		Tau	Taurus 60 7901S	015	
	NOx	00	ОНС	C02	NOx	00	UHC	C02	NOx	00	UHC	C02
	(lbs)	(Ibs)	(sqj)	(lps)	(sqj)	(sql)	(sqj)	(sql)	(sql)	(lbs)	(sqj)	(lps)
Total Emissions per Start (lbs)	11.7	194.7	30.9	4,255	15.2	271.9	8	43.3 5,302	14.7	282.6	45.0	5,962
Total Emissions per Shutdown (lbs)	4.4	84.7	13.6	1,816	6.7	164.3		27.0 2,334	6.3	159.0		26.0 2,515

	Taur	Taurus 70 10801S	1015		Mars	Mars 100 16002S	025		Titai	Titan 130 20501S	015	
	NOx	00	UHC	C02	NOx	00	UHC	C02	NOx	93	UHC	C02
	(lbs)	(lbs)	(Ibs)	(lbs)	(sql)	(lbs)	(Ibs)	(sql)	(sql)	(sql)	(lbs)	(sql)
Total Emissions per Start (lbs)	18.4	360.3		57.4 7,375	29.1	552.0	S	87.7 11,685	34.4	677.0 108.0 13,731	108.0	13,731
Total Emissions per Shutdown (lbs)	8.0	207.8		34.1 3.156	17.3	302.6		4.970	49.4 4.970 15.0	388.5		63.7 5.876

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes #2 Diesel fuel; ES 9-98 compliant.

SCR CATALYST DESIGN DATASHEET

ENQUIRY DETAILS	
Enquiry Number	2 32237
Revision	0
Date of Revision	26-May-2015
Project Name	Atlantic Coast Pipeline
Project Location	Northempton
Application	Şimple Cycle
Number of SCRs	17

PROCESS DATA	11000			100					7880 To 15		100 miles		- E 13
Design Case		Case 1	Case 2	Case 3	Cone 4	Çase 5	Case 6	Casa 7	Çase 8	Case 9	Case 10	Case 11	Case 12
Customer Design Case	Percent	Centaur 40 100%	Centeur 40 100%	Centaur 50L 100%	Centaur 50L	Taurus 60 100%	Taurus 60 100%	Taurus 70 100%	Taurus 70 100%	Mars 100 100%	Mars 100 100%	Titan 130 100%	Titan 130 100%
Fuel Case	Percent	NG	NG	NG	100% NG	100% NG	100% NG	NG NG	NG NG	NG	NG.	100% NG	100% NG
EXHAUST GAS EMISSIONS DATA (BEFORE COOLING												I	
Exhaust Gas Mass Flowrete, Wet	lb/h	164994	127403	161184	127484	186860	151704	247255	179824	367228	289445	437956	341226
Exhaust Gas Volumetric Flowrate, Wet Exhaust Gas Temperature	ACFM	87269	73508 873.0	91761	1004.0	107807	96052	139492 858.0	112383	207193	177388 953.0	254955 900.0	215260 993.0
Exhaust Gas Temperature	degrees F	779.0	9/30	871.0	1004.0	888.0	999.0	930,0	980.0	859.0	833.0	800.0	897.0
Exhaust Ges Composition		9.2 mg		248									
Component MW				- 1									
O2 31.999 H2O 18.015	vol% (wet)	15.78	15.29	14 80	14.08	14.50	13.93	14.39	13.88	14.73	14.23	14.40	13.69
N2 28 013	vol% (wet) vol% (wet)	4 67 76.23	8.15 73.41	5.55 75.68	9.21 73.01	5.81 75.78	9.34 72.96	5.91 75.74	9.30 72.93	5.61 75.85	9.08 73.06	5.90 75.75	9,55 72,88
CO2 44.010	vol% (wet)	2.41	2.27	2.86	2.83	3.00	_2.90	3.05	2.93	2.90	2.76	3.04	3.01
Ar 39.948	vol% (wet)	0.91	0.88	0.91	0.87	0.91	0.87	0.91	0.87	0.91	0.67	0.91	0.87
Entratura transfer transfer to a state	15	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Emissions from the Source @ %O2 Reference applicable for ppmvd and mg/Nm3		and the second second second											
Nax as NO2	ppmvd	25.00	25.00	9.00	9.00	9.00	9.00	9.00	9.00	9 00	9.00	9.00	9.00
Nax as NO2	lb/h	4.66	3.44	1.95	1 55	2.38	1.89	3.20	2.26	4.51	3.44	5.66	4.43
co	ppmvd	50.00	50.00	25.00	25.00	25.00	25.00	25 00	25.00	25.00	25.00	25.00	25 00
co .	lb/h	5.67	4.19	3.31	2.63	4.02	3.20	5.42	3.83	7.62	5 81	9.58	7.49
SO2 SO2	ppmvd	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00
803	lb/h ppmvd	0.00	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
503	lb/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COOLING AIR DATA					2000								
Cooling Air Mass Flowrate, Wet	lb/h	7181.2	27800.1	29270 9	57444 9	38705.3	67013.0	40077.2	73373.3	60074 8	104237.6	98593.9	147099.4
Cooling Air Volumetric Flowrate, Wet	ACFM	1387	6438 100.00	5653 0.00	13303	7475	15518	7739	16991	11601	24139 100.00	19040	34064 100.00
Ambient Air Temperature Relative Humidity	degrees F Percent	60.00	60 00	60.00	100 00 60 00	0.00 60.00	100.00 60.00	0.00 60.00	100.00	0.00 60.00	60.00	60.00	60 00
resource manuacy	racat	80.00	80 001	00.00	00.00	60.00	50.00	00 00	00.00	00.00	00.00	00.00	0000
EXHAUST GAS EMISSIONS DATA (AFTER COOLING)												1	
Exhaust Gas Mass Flowrate, Wet	b/h	172175	155203	190455	184929	225585	218717	287332	253197	427303	393683	536550	488325
Exhaust Gas Volumetric Flowrate, Wet	ACFM	88898	60938	98384	96292	116559	113920	148553	131945	220785	205195	277243	254464
Exhaust Gas Temperature (after cooling)	degrees F	750.00	750.00	750.00	750.00	750.00	750.00	750 00	750.00	750.00	750.00	750.00	750.00
5 to -1 0 0 1													
Exhaust Gas Composition Component MW		100.00										-	
O2 31,999	vol% (wet)	15.99	16.15	15.73	15.95	15.59	15.82	15.29	15.68	15 59	15.78	15.59	15.62
H2O 18.015	vol% (wet)	4.48	7.38	4.72	7.55	4.84	7.67	5.11	7.79	4.84	7.70	4.84	7.84
N2 28 013	vol% (wet)	76.30	73.71	76.21	73 65	76.16	73.61	78 05	73.55	76.15	73.59	78.16	73 54
CO2 44 010	vol% (wet)	2.31	1.67	2.43	1 97	2.50	2.03	2.63	2.10	2.50	2.04	2.49	2.12
Ar 39.948	vol% (wet)	0.91	0.88	0.91	0.88	0.91	0.88	0.91	0.88	0.91	88 0	0.91	0.68
Emissions from the Source @ %O2	15	100:00	100.00	100.00	100.00	100 00	100.00	100.00	100.00	100.00	100 00	100.00	100.00
Emissions from the Source @ %O2 Reference applicable for ppmvd and mg/Nm3								_		-			
Nox as NO2	ppmvd	25.00	25.06	9 00	9 04	9.00	9 04	9.00	9.04	9 00	9 03	9.00	9.04
Nox as NO2	lb/h	4.66	3.44	1.95	1.55	2.38	1.89	3 20	2 26	4.51	3.44	5.66	4 43
00	ppmvd	50.00	50.13	25.00	25.11	25.00	25.11	25.00	25.10	25.00	25.09	25.00	25.11
00	lb/h	5.67	4.19	3.31	2.63	4.02	3.20	5 42	3.83	7.62	5 81	9.58	7.49
S02	ppmvd	0.00	0 00	0.00	0.00	0.00	0.00	0 00	0.00	0.00	0 00	0.00	0.00
S02 S03	lb/h	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
503	ppmvd lb/h	0.00	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0 00	0.00	0.00
	10477	0.50			0.00			Section 1	0.00				
Particulates	kg/h	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	ng/Nm3 (dry)	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
voc	ppmvd	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Amount of Nox as NO2	Percent	50	50	50	50	50	50	50	50	50	50	50	50
ATTOUR OF NOX BS NO2	Percera	30	50	30	- DJ	30	30	- 30	30	50	30	. 20	50
Nox Reduction	Percent	80.00	80.00	44.44	44.44	44.44	44.44	44 44	44.44	44.44	44.44	44.44	44.44
							1			1		- 1	
Dilution Air Required	lb/h	327	327	327	327	327	327	327	327	327	327	327	327
Dilution Air Required	SCFM	68	68	68	68	68	68	68	68	68	68	68	68
Aqueous Ammonia Requirement	lb/h	11	8	6	5	7	6	10	7	14	10	17	13
Aqueous Ammonia Requirement Total Mass injected by SCR	gal/month lb/h	1046	772 335	569 333	452 332	892 334	551 333	932	659 334	1311 341	1000	1648 344	1289
TOTAL MESS RECLECT BY SUR	EAT	336	333	333	332	334	333	337	3.34	341	331	344	340
Exhaust Gas Mass Flowrate, Wet at SCR catalyst	lb/h	172513.1	155538.2	190787.8	185260 6	225919 5	219049.7	287668.9	253531.1	427643.2	394020 0	536894.1	488665.8
Exhaust Gas Vol Flowrate, Wet at SCR Catalyst	ACFM	89073	81113	98556	96465	116732	114093	148727	132119	220962	205371	277421	254642
Performance Warranties @ %O2	15												
Reference applicable for ppmvd and mg/Nm3													
Nax as NO2 Nax as NO2	ppmvd lb/h	5.0 0.93	5.0 0.69	5.0 1.09	5.0 0.86	5 0 1.32	5.0 1.05	5.0 1.78	5.0 1.26	5.0 2.50	5.0. 1.91	5.0 3.15	5 0 2 46
Nox as NO2 NH3 Slip	b/h ppmyd	10.00	10.03	10.00	10.04	1.32	1.05	10.00	1 26	10.00	1.91	10.00	10.04
NH3 Sip	lb/h	0.69	0.03	0.80	0.64	0.00	0.78	1.32	0.93	1.85	1.41	2.33	1.82
AFCU Selected		AQEL15	AQEL15	AQEL15	AQEL15	AQEL15	AQEL15	AQEL15	AQEL15		AQEL15	AQEL15	AQEL15
SO2 to SO3 Conversion	Percent	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA
Pressure Drop across the cetalyst	inH20	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA	VTA
* VTA = Vendor to Advise													

SITE/AMBIENT CONDITIONS		
Design Ambient Temperature	100	degrees F
Design Ambient Pressure	407	inH2O
Site Elevation	1500	n
Gauge Duct Pressure	20 00	inH2O
Relative Humidity	60	Percent

AFCU DESIGN	
Reagent	Aqueous Ammonia
Respect Concentration	19 00 %wów

GAS ENGINE TECHNICAL DATA

CATERPILLAR°

ENGINE SPEED (rpm):	1800	RATING ST					STANDARD
COMPRESSION RATIO:	11:1	APPLICATION					Genset
FTERCOOLER TYPE:	SCAC	RATING LE	VEL:				STANDBY
AFTERCOOLER WATER INLET (°F):	130	FUEL:					Nat Gas
JACKET WATER OUTLET (°F):	210	FUEL SYST	EM:			MARTIN AID EUE	LPG IMPCO
ASPIRATION:	TA	EUEL DOE	00 IDE DANOE/	-1.		WITH AIR FUEL	RATIO CONTROL
COOLING SYSTEM:	JW+OC, AC		SSURE RANGE(psi	g):			1.5-5.0
CONTROL SYSTEM: EXHAUST MANIFOLD:	EIS ASWC		HANE NUMBER:				85
COMBUSTION:	Low Emission	FUEL LHV	CAPABILITY AT 77	OF INITED AND TH	MD (6).		905 3501
NOx EMISSION LEVEL (g/bhp-hr NOx):	2.0	POWER FA		PINLET AIR TE	MP. (II):		0.8
NOX ENGOSION LEVEL (g/blip-fil NOX).	2.0	VOLTAGE(240-480
		VOLINGE					
RATIN	G		NOTES	LOAD	100%	75%	50%
GENSET POWER		(WITHOUT FAN)	(1)(2)	ekW	1000	750	500
GENSET POWER			(1)(2)	kVA	1250	937	625
ENGINE POWER		(WITHOUT FAN)	(2)	bhp	1416	1059	707
GENERATOR EFFICIENCY			(1)	%	94.7	95.0	94.8
GENSET EFFICIENCY(@ 1.0 Power Factor)		(ISO 3046/1)	(3)	%	31.7	30.5	28.1
THERMAL EFFICIENCY		(·	(4)	%	52.4	54.7	58.6
TOTAL EFFICIENCY (@ 1.0 Power Factor)			(5)	%	84.1	85.2	86.7
			(3)	70	04.1	65.2	00.7
ENGINE D	ATA						
GENSET FUEL CONSUMPTION		(ISO 3046/1)	(6)	Btu/ekW-hr	10917	11314	12254
GENSET FUEL CONSUMPTION		(NOMINAL)	(6)	Btu/ekW-hr	11128	11533	12492
ENGINE FUEL CONSUMPTION		(NOMINAL)	(6)	Btu/bhp-hr	7859	8170	8831
AIR FLOW (77°F, 14.7 psia)		(WET)	(7) (8)	ft3/min	2988	2240	1522
AIR FLOW		(WET)	(7) (8)	lb/hr	13248	9934	6747
FUEL FLOW (60°F, 14.7 psia)		(**21)	(1)(0)	scfm	205	159	115
COMPRESSOR OUT PRESSURE				in Hg(abs)	70.1	60.4	47.0
COMPRESSOR OUT TEMPERATURE				°F	309	269	201
AFTERCOOLER AIR OUT TEMPERATURE				°F	134	131	131
INLET MAN. PRESSURE			(9)	in Hg(abs)	62.6	48.5	34.9
INLET MAN. TEMPERATURE		(MEASURED IN PLENUM)	(10)	°F	138	135	134
TIMING			(11)	*BTDC	18	18	18
EXHAUST TEMPERATURE - ENGINE OUTLET			(12)	l °F	876	873	879
EXHAUST GAS FLOW (@engine outlet temp, 14.5	nsia)	(WET)	(13) (8)	ft3/min	8086	6062	4155
EXHAUST GAS MASS FLOW	, poid,	(WET)	(13) (8)	lb/hr	13810	10371	7063
		(112.)	(10)(0)	107111	10010	10071	7000
EMISSIONS DATA -	ENGINE OUT						
NOx (as NO2)			(14)(15)	g/bhp-hr	2.00	2.00	2.00
co			(14)(16)	g/bhp-hr	1.89	1.90	1.95
THC (mol. wt. of 15.84)			(14)(16)	g/bhp-hr	2.36	2.47	2.82
NMHC (mol. wt. of 15.84)			(14)(16)	g/bhp-hr	0.35	0.37	0.42
NMNEHC (VOCs) (mol. wt. of 15.84)			(14)(16)(17)	g/bhp-hr	0.24	0.25	0.28
HCHO (Formaldehyde)			(14)(16)	g/bhp-hr	0.28	0.28	0.28
CO2			(14)(16)	g/bhp-hr	499	507	525
EXHAUST OXYGEN				% DRY	7.5	7.2	6.9
LAMBDA			(14)(18) (14)(18)	70 DK I	1.49	1.43	1.35
PUMPPU			(14)(10)		1.49	1.43	1,35
ENERGY BALAN	NCE DATA		L				
LHV INPUT			(19)	Btu/min	185475	144166	104103
HEAT REJECTION TO JACKET WATER (JW)			(20)(27)	Btu/min	49148	41900	34467
HEAT REJECTION TO ATMOSPHERE			(21)	Btu/min	6831	5682	4553
HEAT REJECTION TO LUBE OIL (OC)			(22)(27)	Btu/min	8040	6854	5638
HEAT REJECTION TO EXHAUST (LHV TO 77°F)			(23)(24)	Btu/min	51104	38351	26562
HEAT REJECTION TO EXHAUST (LHV TO 248°F)	1		(23)	Btu/min	39125	29274	20234
HEAT REJECTION TO AFTERCOOLER (AC)	,		(25)(28)	Btu/min	9329	5510	1919
PUMP POWER				Btu/min	971	971	971
FOMETOWEK			(26)) DIW/ITIII)	9/1	9/1	9/1

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

Emission levels are at engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

FUEL USAG	E GUIDI	-W3 - B1										
CAT METHANE NUMBER	30	35	40	45	50	55	60	65	70	75	80	85
SET POINT TIMING	-	-	-	-	-	-	-	-	15	16	17	18
DERATION FACTOR	0	0	0	0	0	0	0	0	1	1	1	1

ALTITUDE DERATION FACTORS AT RATED SPEED

INLET AIR TEMP °F

130	1	1 1	0.99	0.96	0.92	0.89	0.85	0.82	0.79	0.76	0.73	0.70	0.67
120	1	1	1	0.97	0.94	0.90	0.87	0.83	0.80	0.77	0.74	0.71	0.68
110	1	1	1	0.99	0.95	0.92	0.88	0.85	0.81	0.78	0.75	0.72	0.69
100	1	1	1	1	0.97	0.93	0.90	0.86	0.83	0.80	0.76	0.73	0.70
90	1	1	1	1	0.99	0.95	0.91	0.88	0.84	0.81	0.78	0.75	0.72
80	1	1	1	1	1	0.97	0.93	0.89	0.86	0.83	0.79	0.76	0.73
70	1	1	1	1	1	0.99	0.95	0.91	0.88	0.84	0.81	0.78	0.74
60	1	1	1	1	1	1	0.97	0.93	0.89	0.86	0.82	0.79	0.76
50	1	1	1	1	1	1	0.99	0.95	0.91	0.87	0.84	0.81	0.77
	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000

ALTITUDE (FEET ABOVE SEA LEVEL)

AFTERCOOLER HEAT REJECTION FACTORS (ACHRF)

INLET AIR TEMP °F

130	1.40	1.46	1.54	1.61	1.68	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
120	1.32	1.38	1.45	1.52	1.59	1.62	1.62	1.62	1.62	1.62	1.62	1.62	1.62
110	1.23	1.30	1.37	1.44	1.51	1.53	1.53	1.53	1.53	1.53	1.53	1.53	1.53
100	1.15	1.22	1.29	1.35	1.42	1.44	1.44	1.44	1.44	1.44	1.44	1.44	1.44
90	1.07	1.14	1.20	1.27	1.34	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
80	1	1.06	1.12	1.19	1.25	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27
70	1	1	1.04	1.10	1.17	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
60	1	1	1	1.02	1.08	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
50	1	1	1	1	1	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02
	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000

ALTITUDE (FEET ABOVE SEA LEVEL)

FUEL USAGE GUIDE:

This table shows the derate factor and full load set point timing required for a given fuel. Note that deration and set point timing reduction may be required as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar methane number calculation program.

ALTITUDE DERATION FACTORS:

This table shows the deration required for various air inlet temperatures and altitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for

ACTUAL ENGINE RATING:

To determine the actual rating of the engine at site conditions, one must consider separately, limitations due to fuel characteristics and air system limitations. The Fuel Usage Guide deration establishes fuel limitations. The Altitude/Temperature deration factors and RPC (reference the Caterpillar Methane Program) establish air system limitations. RPC comes into play when the Altitude/Temperature deration is less than 1.0 (100%). Under this condition, add the two factors together. When the site conditions do not require an Altitude/ Temperature derate (factor is 1.0), it is assumed the turbocharger has sufficient capability to overcome the low fuel relative power, and RPC is ignored. To determine the actual power available, take the lowest rating between 1) and 2).

- 1) Fuel Usage Guide Deration
- 2) 1-((1-Altitude/Temperature Deration) + (1-RPC))

AFTERCOOLER HEAT REJECTION FACTORS(ACHRF):
To maintain a constant air inlet manifold temperature, as the inlet air temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooker. Use the aftercooker heat rejection factor (ACHRF) to adjust for inlet air temp and altitude conditions. See note 28 for application of this factor in calculating the heat exchanger sizing criteria. Failure to properly account for these factors could result in detonation and cause the engine to shutdown or fail,

NOTES:

- 1. Generator efficiencies, power factor, and voltage are based on standard generator. [Genset Power (ekW) is calculated as: Engine Power (bkW) x Generator Efficiency]. [Genset Power (kVA) is calculated as: Engine Power (bkW) x Generator Efficiency / Power Factor]
- 2. Rating is with two engine driven water pumps. Tolerance is (+)3, (-)0% of full load.
- 3. ISO 3046/1 Genset efficiency tolerance is (+)0, (-)5% of full load % efficiency value based on a 1.0 power factor.
- 4. Thermal Efficiency is calculated based on energy recovery from the jacket water, lube oil, and exhaust to 248°F with engine operation at ISO 3046/1 Genset Efficiency, and assumes unburned fuel is converted in an oxidation catalyst.
- 5. Total efficiency is calculated as: Genset Efficiency + Thermal Efficiency. Tolerance is ±10% of full load data.
- 6. ISO 3046/1 Genset fuel consumption tolerance is (+)5, (-)0% of full load data. Nominal genset and engine fuel consumption tolerance is ± 3.0% of full load data.
- 7. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 8. Inlet and Exhaust Restrictions must not exceed A&I limits based on full load flow rates from the standard technical data sheet.
- 9. Inlet manifold pressure is a nominal value with a tolerance of \pm 5 %.
- 10. Inlet manifold temperature is a nominal value with a tolerance of ± 9°F.
- 11. Timing indicated is for use with the minimum fuel methane number specified. Consult the appropriate fuel usage guide for timing at other methane numbers.
- 12. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 13. Exhaust flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 6 %.
- 14. Emissions data is at engine exhaust flange prior to any after treatment.
- 15. NOx tolerances are ± 18% of specified value.

 16. CO, CO2, THC, NMHC, NMNEHC, and HCHO values are "Not to Exceed" levels. THC, NMHC, and NMNEHC do not include aldehydes. An oxidation catalyst may be required to meet Federal, State or local CO or HC requirements.
- 7. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 18. Exhaust Oxygen tolerance is ± 0.5; Lambda tolerance is ± 0.05. Lambda and Exhaust Oxygen level are the result of adjusting the engine to operate at the specified NOx level.
- LHV rate tolerance is ± 3.0%.
- 20. Heat rejection to jacket water value displayed includes heat to jacket water alone. Value is based on treated water. Tolerance is ± 10% of full load data.
- Heat rejection to atmosphere based on treated water. Tolerance is ± 50% of full load data.
 Lube oil heat rate based on treated water. Tolerance is ± 20% of full load data.
 Exhaust heat rate based on treated water. Tolerance is ± 10% of full load data.

- 24. Heat rejection to exhaust (LHV to 77°F) value shown includes unburned fuel and is not intended to be used for sizing or recovery calculations.
- 25. Heat rejection to aftercooler based on treated water. Tolerance is ±5% of full load data.
- 26. Pump power includes engine driven jacket water and aftercooler water pumps. Engine brake power includes effects of pump power.
- 27. Total Jacket Water Circuit heat rejection is calculated as: (JW x 1.1) + (OC x 1.2). Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

 28. Total Aftercooler Circuit heat rejection is calculated as: AC x ACHRF x 1.05. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied
- tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

G3516

GAS ENGINE TECHNICAL DATA

ENGINE POWER (bhp): 1416 COOLING SYSTEM:

ENGINE SPEED (rpm): 1800 AFTERCOOLER WATER INLET (°F):
EXHAUST MANIFOLD: ASWC JACKET WATER OUTLET (°F):

JW+OC, AC 130

210

Free Field Mechanical and Exhaust Noise

	SOUND PRESSU	JRE LE	VEL (dB		L							
	Octave Band Center Frequency (OBCF)											
100%	6 Load Data		dB(A)	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz	
Mechanical	Distance from	3.3	100	95	96.6	92.8	94	96.1	93.3	90.1 84.4	84.4	
Sound	the Engine (ft)	23.0	90.4	85.4	87	83.2	84.4	86.5	83.7	80.5	74.8	
		49.2	85.1	80.1	81.7	77.9	79.1	81.2	78.4	75.2	69.5	
Exhaust Sound	ust Sound Distance from the Engine (ft)	4.9	115.4	104.7	105.7	112.4	110.6	108.3	108.2	108	106.1	
		23.0	102	92.4	95.4	100.2	96.7	95.4	94.7	94.6	91.8	
		49.2	95.4	85.8	88.8	93.6	90	88.8	88.1	87.9	85.2	

SOUND PARAMETER DEFINITION:

Data Variability Statement:

Sound data presented by Caterpillar has been measured in accordance with ISO 6798 in a Grade 3 test environment. Measurements made inaccordance with ISO 6798 will result in some amount of uncertainty. The uncertainties depend not only on the accuracies with which sound pressurelevels and measurement surface areas are determined, but also on the 'near-field error' which increases for smaller measurement distances and lowerfrequencies. The uncertainty for a Grade 3 test environment, that has a source that produces sounds that are uniformly distributed in frequency over thefrequency range of interest, is equal to 4 dB (A-weighted). This uncertainty is expressed as the largest value of the standard deviation.

APPENDIX E

SECRETARY OF STATE REGISTRATION

NORTH CAROLINA **Department of the Secretary of State**

To all whom these presents shall come, Greetings:

I, Elaine F. Marshall, Secretary of State of the State of North Carolina, do hereby certify the following and hereto attached to be a true copy of

CERTIFICATE OF AUTHORITY

OF

ATLANTIC COAST PIPELINE, LLC

the original of which was filed in this office on the 3rd day of November, 2014.

Scan to verify online.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal at the City of Raleigh, this 9th day of September, 2015.

Secretary of State

Elaine J. Marshall

Certification# 97485708-1 Reference# 12733297- Page: 1 of 7 Verify this certificate online at www.secretary.state.nc.us/verification

SOSID: 1410169 Date Filed: 11/3/2014 10:30:00 AM Elaine F. Marshall North Carolina Secretary of State

State of North Carolina

Department of the Secretary of State

C2014 304 02235

APPLICATION FOR CERTIFICATE OF AUTHORITY FOR LIMITED LIABILITY COMPANY

Pursuant to §57D-7-03 of the General Statutes of North Carolina, the undersigned limited liability company hereby applies for a Certificate of Authority to transact business in the State of North Carolina, and for that purpose submits the following:

1. The name of the limited liability company is Atlantic Coast Pipeline, LLC

						 '								
	and i	if the limited liability c	ompany name is	unavailabl	e for use in the State	of North Carolina, the name the limited								
	liabi	lity company wishes to	use is											
2.	The	state or country under	whose laws the l	imited liabi	lity company was for	med is Delaware								
3.	Princ	rincipal office information: (Select either a or b.)												
	a.	The limited liabili	ty company has	a principal	office.									
		The principal office t	elephone numbe	r: <u>804-819</u>	-2000	· · · · · · · · · · · · · · · · · · ·								
		The street address and	d county of the p	rincipal of	fice of the limited lial	bility company is:								
		Number and Street: 120 Tredegar Street												
		City: Richmond		State: VA	Zip Code: 23219	County:								
		The mailing address,	if different fron	ı the street	address, of the princ	ipal office of the corporation is:								
		Number and Street:		F1 12										
		City:		State:	_ Zip Code:	County:								
	b.	☐ The limited liabili	ity company doe	s not have	a principal office.									
4.	The	name of the registered	agent in the Sta	te of North	Carolina is: CT Cor	poration System .								
5.	The	street address and cour	nty of the registe	red agent's	office in the State of	North Carolina is:								
	Nun	nber and Street: 150 Fa	yetteville Street	Box 1011										
	City	Raleigh	State:	NC 2	Zip Code: 27601	County: Wake								
6.		North Carolina mailing	g address, <i>if diff</i>	erent from	the street address, o	f the registered agent's office in the State of Nor								
	Nun	nber and Street:	· · · · · · · · · · · · · · · · · · ·											
	City	ξ	State:	NC 2	Zip Code:	County:								

CORPORATIONS DIVISION (Revised January 2014)

P.O. BOX 29622

RALEIGH, NC 27626-0622 (Form L-09)

NC057 - 12/31/2013 Walters Khrwer Online

Atlantic Coast Pipalina, LLC

Officers

Michele L. Cardiff

Vice President (Chief Accounting Officer)

Primary Address 701 East Cary Street Richmond, Virginia 23219

G. Scott Hetzer

Vice President and Treasurer

Primary Address 100 Tredegar Street Richmond, Virginia 23219

Henry P Linginfelter

Vice President

Primary Address 120 Tredegar Street Richmond, Virginia 23219

Carter M. Reid

Vice President and Secretary

Primary Address 100 Tredegar Street Richmond, Virginia 23219

Atlantic Coast Pipeline, ELC

Karen W. Doggett

Assistant Secretary

<u>Primary Address</u> 100 Tredegar Street Richmond, Virginia 23219

John L. Newman

Assistant Treasurer

Primary Address 100 Tredegar Street Richmond, Virginia 23219

<u>Managers</u>

Anne E. Bomar

Manager & Vice President

Primary Address 120 Tredegar Street Richmond, Virginia 23219

Phillip C Grigsby

Manager & Vice President

Primary Address 120 Tredegar Street Richmond, Virginia 23219

Atlantic Coast Pipeline, LLC

Karl W Newlin

Manager & Vice President

Primary Address 120 Tredegar Street Richmond, Virginia 23219

APPLICATION FOR CERTIFICATE OF AUTHORITY Page 2

7. The names, titles, and usual business addresses of the current company officials of the limited liability company are: (use attachment if necessary) Name and Title **Business** Address Anne E. Bomar, Manager & Vice President 120 Tredegar Street, Richmond, VA 23219 Phillip C. Grigsby, Manager & Vice President 120 Tredegar Street, Richmond, VA 23219 Karl W. Newlin, Manager & Vice President 120 Tredegar Street, Richmond, VA 23219 Henry P. Linginfelter, Vice President 120 Tredegar Street, Richmond, VA 23219 See Attachment. 8. Attached is a certificate of existence (or document of similar import), duly authenticated by the secretary of state or other official having custody of limited liability company records in the state or country of formation. The Certificate of Existence must be less than six months old. A photocopy of the certification cannot be accepted. 9. If the limited liability company is required to use a fictitious name in order to transact business in this State, a copy of the resolution of its managers adopting the fictitious name is attached. 10. (Optional): Please provide a business e-mail address: Privacy Redaction The Secretary of State's Office will e-mail the business automatically at the address provided above at no cost when a document is filed. The e-mail provided will not be viewable on the website. For more information on why this service is offered, please see the instructions for this document. 11. This application will be effective upon filing, unless a delayed date and/or time is specified: This the 3 day of November , 20 14 Atlantic Coast Pipeline, LLC Name of Limited Liability Company Signature of Company Official Karen W. Doggett, Assistant Secretary Type or Print Name and Title Notes: 1. Filing fee is \$250. This document must be filed with the Secretary of State.

CORPORATIONS DIVISION

(Revised January 2014)

P.O. BOX 29622

RALEIGH, NC 27626-0622 (Form L-09)

NC057 - 12/31/2013 Wolters Kluwer Online

Delaware

PAGE 1

The First State

I, JEFFREY W. BULLOCK, SECRETARY OF STATE OF THE STATE OF DELAWARE, DO HEREBY CERTIFY "ATLANTIC COAST PIPELINE, LLC" IS DULY FORMED UNDER THE LAWS OF THE STATE OF DELAWARE AND IS IN GOOD STANDING AND HAS A LEGAL EXISTENCE SO FAR AS THE RECORDS OF THIS OFFICE SHOW, AS OF THE TWENTY-NINTH DAY OF OCTOBER, A.D. 2014.

AND I DO HEREBY FURTHER CERTIFY THAT THE ANNUAL TAXES HAVE NOT BEEN ASSESSED TO DATE.

5593371 8300

141346545

You may varify this certificate online at corp.delaware.gov/authver.shtml

Jeffrey W. Bullock, Secretary of State
AUTHENTYCATION: 1819205

DATE: 10-29-14