

July 20, 2017

BY: OVERNIGHT MAIL

Mr. Charles McEachern Raleigh Regional Office NCDEQ Division of Air Quality Suite 101 3800 Barrett Drive Raleigh, NC 27609

RE: Atlantic Coast Pipeline, L.L.C.

Northampton Compressor Station

Air Permit Application Update

Dear Mr. McEachern:

Atlantic Coast Pipeline, LLC (ACP) is submitting updates to the Northampton Compressor Station permit application, dated September 16, 2015. The changes are to ancillary equipment including emergency generators and storage tanks. No changes are requested for the main natural gas compressors. The changes do not materially affect the applicable regulatory requirements. ACP is proposing the following updates:

- Replace the Caterpillar G3516 emergency generator rated at 1,416 hp (EG-01) with a Caterpillar G3516B emergency generator rated at 1,818 hp;
- Add a new Generac SG100 emergency generator rated at 148.9 hp (EG-02) for the regional operations center;
- Replace the boiler rated at 6.3 MMBtu/hr (WH-01) with a Hurst LPW-G-125-60W boiler rated at 5.25 MMBtu/hr;
- Decrease the volume of the proposed pipeline fluids tank (TK-2) from 1,500 gallons to 1,000 gallons;
- Increase the volume of the proposed Ammonia Tank (TK-3) from 8,000 gallons to 13,400 gallons; and
- Correct a calculation error that overestimated fugitive emissions.

The updated application forms are contained in Attachment 1 including the equipment changes. A revised site plan is contained in Attachment 2. Revised emission calculations are provided in Attachment 3 based on the same operating assumptions used in the original application. Vendor specifications are provided in Attachment 4 for the updated emergency generators (EG-01, EG-

NC Dept of Environmental Quality

JUL 2 1 2017

Raleigh Regional Office

Mr. Charles McEachern July 20, 2017 Page 2

02) and the boiler (WH-01). The changes in annual emissions are summarized in the following table; creating a decrease in NO_X , CO, VOC, and CO_{2e} values.

		Anı	nual Emissi	ons (Tons/Y	rear)	
	NO_X	CO	VOC	PM	SO ₂	CO _{2e}
Original Application	19.7	31.1	41.1	18.4	3.1	145,686
Proposed Update	19.2	31.0	21.2	18.4	3.1	129,133

If you have questions about this submittal, please do not hesitate to contact Mr. Laurence Labrie at (804) 273-3075 or at laurence.a.labrie@dominionenergy.com.

Sincerely

Richard B. Gangle, Manager

Environmental

Atlantic Coast Pipeline

July 20, 2017

BY: OVERNIGHT MAIL

Mr. Charles McEachern
Raleigh Regional Office
NCDEQ Division of Air Quality
Suite 101
3800 Barrett Drive
Raleigh, NC 27609

RE: Atlantic Coast Pipeline, L.L.C.

Northampton Compressor Station

Air Permit Application Update

Raleigh Regional Office

NC Dept of Environmental Quality

Dear Mr. McEachern:

Atlantic Coast Pipeline, LLC (ACP) is submitting updates to the Northampton Compressor Station permit application, dated September 16, 2015. The changes are to ancillary equipment including emergency generators and storage tanks. No changes are requested for the main natural gas compressors. The changes do not materially affect the applicable regulatory requirements. ACP is proposing the following updates:

- Replace the Caterpillar G3516 emergency generator rated at 1,416 hp (EG-01) with a Caterpillar G3516B emergency generator rated at 1,818 hp;
- Add a new Generac SG100 emergency generator rated at 148.9 hp (EG-02) for the regional operations center;
- Replace the boiler rated at 6.3 MMBtu/hr (WH-01) with a Hurst LPW-G-125-60W boiler rated at 5.25 MMBtu/hr;
- Decrease the volume of the proposed pipeline fluids tank (TK-2) from 1,500 gallons to 1,000 gallons;
- Increase the volume of the proposed Ammonia Tank (TK-3) from 8,000 gallons to 13,400 gallons; and
- Correct a calculation error that overestimated fugitive emissions.

The updated application forms are contained in Attachment 1 including the equipment changes. A revised site plan is contained in Attachment 2. Revised emission calculations are provided in Attachment 3 based on the same operating assumptions used in the original application. Vendor specifications are provided in Attachment 4 for the updated emergency generators (EG-01, EG-

Mr. Charles McEachern July 20, 2017 Page 2

02) and the boiler (WH-01). The changes in annual emissions are summarized in the following table; creating a decrease in NO_X , CO, VOC, and CO_{2e} values.

		Annual Emissions (Tons/Year)								
	NO_X	CO	VOC	PM	SO ₂	CO _{2e}				
Original Application	19.7	31.1	41.1	18.4	3.1	145,686				
Proposed Update	19.2	31.0	21.2	18.4	3.1	129,133				

If you have questions about this submittal, please do not hesitate to contact Mr. Laurence Labrie at (804) 273-3075 or at laurence.a.labrie@dominionenergy.com.

Sincerely

Richard B. Gangle, Manager

Environmental

Atlantic Coast Pipeline

ATTACHMENTS

ATTACHMENT A

NC DENR PERMIT APPLICATION FORMS

FORM A1

FACILITY (General Information)

REVISED 05/25/12 NCDENR/Division of Air Quality - App	lication for Air Permit to Construct/Operate A1
NOTE- APPLICATION WILL NOT BE	PROCESSED WITHOUT THE FOLLOWING:
Local Zoning Consistency Determination (if required) ☐ Facilities The second of the sec	ility Reduction & Recycling Survey Form (Form A4)
Responsible Official/Authorized Contact Signature	ropriate Number of Copies of Application .E. Seal (if required)
GENERAL	INFORMATION
Legal Corporate/Owner Name: Atlantic Coast Pipeline, LLC	
Site Name: Norhampton Compressor Station	
Site Address (911 Address) Line 1: 718 Forest Rd	
Site Address Line 2:	
City: Pleasant Hill	State: North Carolina
Zip Code: 27866	County: Northampton
CONTACT	INFORMATION
Permit/Technical Contact:	Facility/Inspection Contact:
Name/Title: Laurence A. Labrie	Name/Title:
Mailing Address Line 1: 5000 Dominion Boulevard	Mailing Address Line 1:
Mailing Address Line 2: 2 NE	Mailing Address Line 2:
City: Glen Allen State: VA Zip Code:	23060 City: State: Zip Code:
Phone No. (area code) 804-273-3075 Fax No. (area code)	Phone No. (area code) Fax No. (area code)
Email Address: laurence.a.labrie@dominionenergy.com	Email Address:
Responsible Official/Authorized Contact:	Invoice Contact:
Name/Title: Leslie Hartz	Name/Title: Richard B Gangle
Mailing Address Line 1: 707 E. Main Street	Mailing Address Line 1: 5000 Dominion Boulevard
Mailing Address Line 2:	Mailing Address Line 2: 2 NE
	23219 City: Glen Allen State: VA Zip Code: 23060
Phone No. (area code) 804-771-4468 Fax No. (area code)	Phone No. (area code) 804-273-2814 Fax No. (area code)
ail Address: leslie.hartz@dominionenergy.com	Email Address: richard.b.gangle@dominionenergy.com
	IS BEING MADE FOR
	n of Facility (permitted) Renewal with Modification
, , , , , , , , , , , , , , , , , , , ,	wal (TV Only)
	TER APPLICATION (Check Only One)
☐ General ☑ Small ☐ Prohibitory Small	Synthetic Minor Title V
	t Site) INFORMATION
Describe nature of (plant site) operation(s): Facility ID No. : TBD	iono, ini ordinarion
Proposed new (greenfield) natural gas pipeline compressor station.	
Primary SIC/NAICS Code: 4022/486240	Out of the Atlanta and the Atl
Primary SIC/NAICS Code: 4922/486210	Current/Previous Air Permit No. N/A Expiration Date:
Facility Coordinates: Latitude: 36.543874	Longitude: -77.505712
	, please contact the DAQ Regional Office prior to submitting this application.*** tructions)
,	T PREPARED APPLICATION
Person Name: Robert Sawyer	Firm Name: Environmental Resources Management
Mailing Address Line 1: 180 Admiral Cochrane Dr	Mailing Address Line 2: Suite 400
City: Annapolis State: MD	Zip Code: 21401 County: Anne Arundel
Phone No. (area code) 410-266-0006 Fax No. (area code)	Email Address: robert.sawyer@erm.com
	OFFICIAL/AUTHORIZED CONTACT
Name (typed): Leslie Hartz	Title: VP Pipeline Construction
X Signature(Blue Ink):	Date: 1/13/17

Attach Additional Sheets As Necessary

FORMs A2, A3

EMISSION SOURCE LISTING FOR THIS APPLICATION - A2 112r APPLICABILITY INFORMATION - A3

REVISED 04/10/07	NCDENR/Division of Air Quality - Applica	ition for Air Permit to C	Construct/Operate	A2
	EMISSION SOURCE LISTING: New, Modifie	d, Previously Unp	ermitted, Replaced, Deleted	
EMISSION SOURCE	EMISSION SOURCE	CONTROL DEVICE	CONTROL DEVICE	
ID NO.	DESCRIPTION	ID NO.	DESCRIPTION	
	Equipment To Be ADDED By This Application	(New, Previously		
CT-01	Taurus 70-10802S Compressor Turbine	CT-01-SCR	Selective Catalyst Reduction	
		CT-01-OC	Oxidation Catalyst	
CT-02	Centaur 50-6200LS Compressor Turbine	CT-02-SCR	Selective Catalyst Reduction	
		CT-02-OC	Oxidation Catalyst	
CT-03	Centaur 40-4700S Compressor Turbine	CT-03-SCR	Selective Catalyst Reduction	
		CT-03-OC	Oxidation Catalyst	
EG-01	Caterpillar G3516B Emergency Generator	N/A		
EG-02	Generac SG100 Emergency Generator	N/A		
WH-01	Hurst LPW-G-125-60W Hot Water Boiler	N/A		
TK-1	Pipeline Liquids Storage Tank	N/A		
TK-2	Hydrocarbon Waste Tank	N/A		
TK-3	Ammonia Tank	N/A		
TK-4	Odorant Tank	N/A		
Fug-01	Fugitive Leaks - Blowdowns	N/A		
Fug-02	Fugitive Leaks - Piping	N/A		
	Existing Permitted Equipment To	Be MODIFIED B	y This Application	
N/A				
_				
/				
-				
	Equipment To Be DELE	TED By This Ann	plication	VI 186-1861
N/A		, , , , , , ,	nouton	
				15 <u></u>
, , , , , , , , , , , , , , , , , , ,				
1.0/		L		

112(r) APPLIC	CABILITY INFORMATION	A 3
Is your facility subject to 40 CFR Part 68 "Prevention of Accidental Releases"	- Section 112(r) of the Federal Clean Air Act? No	
If No, please specify in detail how your facility avoided applicability:	No chemicals subject to regulation under this Subpart will be	
present onsite. The aqueous ammonia stored in TK-3 (exempt from p	permitting) will have an ammonia concentration of less than 20%.	
If your facility is Subject to 112(r), please complete the following:		
A. Have you already submitted a Risk Management Plan (RMP) to EPA Pe	ursuant to 40 CFR Part 68.10 or Part 68.150?	
Yes No Specify required RMP submittal date:	If submitted, RMP submittal date:	
B. Are you using administrative controls to subject your facility to a lesser	112(r) program standard?	
Yes No If yes, please specify:		

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NCDENF	R/Division of Air C	Quality - Applica	ation for Air F	Permit to Con	struct/Operat	е		В
ISSION SOURCE DESCRIPTION:			3.	EMISSION S	OURCE ID NO	D:	CT-01	
Taurus 70-10802S Compressor Turbine				CONTROL D	EVICE ID NO	(S):		and CT-01-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK) ID NO(S):	EP-01	
DESCRIBE IN DETAILTHE EMISSION SOURCE PRO	CESS (ATTACH F	LOW DIAGRAM	/i):			, (.,		
Natural gas fired compressor turbine used to boost the				e.				
TYPE OF EMISSION SOURCE	E (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9 (ON THE FOLL	OWING PAGI	ES):	
l <u> </u>	☐ Woodworking (. of chemicals		•	
I	Coating/finishin	•	B5)		on (Form B8)	9	(
	Storage silos/bi		/	Other (Fo	,			
START CONSTRUCTION DATE: April 2017 C	PERATION DATE	: No	vember 2018	DATE MANU	FACTURED:		2016 or Later	
	olar Turbines Tau					Y 7 DAY/WK		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?)				MACT (SUBP.				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FE			N-AUG 25	SEP-NOV				
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC				TION:	<20	% OPACITY
CRITERIA AIR	POLLUTANT	1					1000000	
		SOURCE OF		D ACTUAL			EMSSIONS	
		EMISSION	l	ROLS / LIMITS)	(BEFORE CONT			(ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42	1.92	8.41	1.92	8.41	1.92	8.41
SULFUR DIOXIDE (SO2)		AP-42	0.33	1.43	0.33	1.43	0.33	1.43
NITROGEN OXIDES (NOx)		Mfg	1.91	8.35	3.41	14.95	1.91	8.35
RBON MONOXIDE (CO)		Mfg	2.99	13.08	7.33	32.11	2.99	13.08
LATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.18	0.78	0.33	1.46	0.18	0.78
LEAD		9	0.10	0.70	0.00		0.10	0.70
OTHER								
HAZARDOUS AI	R POLLUTAN	T EMISSION	IS INFORM	ATION FO	R THIS SC	URCE		
		SOURCE OF		D ACTUAL			EMSSIONS	
•		EMISSION		ROLS / LIMITS)	(BEFORE CONT	1		ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,3-Butadiene	106-99-0	AP-42	0.00002	0.0001	0.00003	0.0001	0.00002	0.0001
Acetaldehyde	75-07-0	AP-42	0.002	0.01	0.003	0.01	0.002	0.01
Acrolein	107-02-8	AP-42	0.0003	0.001	0.0005	0.002	0.0003	0.001
Benzene	71-43-2	AP-42	0.0005	0.002	0.001	0.004	0.0005	0.002
Ethylbenzene	100-41-4	AP-42	0.001	0.01	0.003	0.01	0.001	0.01
Formaldehyde	50-00-0	Mfg.	0.11	0.50	0.23	0.99	0.11	0.50
Naphthalene	91-20-3	AP-42	0,0001	0.0002	0.0001	0.0004	0.0001	0.0002
PAH	01200	AP-42	0.0001	0.0002	0.0002	0.001	0.0001	0.0004
	OLLUTANT E						0.0001	0.0004
	EXPECTED ACT					<u></u>		
TOXIC AIR POLLUTANT AND CAS NO.	EXI EGILB AGI	EF SOURCE				day	II-	hee
	106.00.0			/hr				n/yr
1,3-Butadiene Acetaldehyde	106-99-0 75-07-0	AP-42		0002	0.0			.15
Acrolein Acrolein		AP-42		002	0.			3.78
	107-02-8	AP-42		003	0.			.20
Ammonia Benzene	7664-41-7	Mfg.		32	31			63.20
Formaldehyde	71-43-2	AP-42		005	0.			.13
	50-00-0	Mfg.		11	2.			2.03
Toluene	108-88-3	AP-42		005	0.			1.78
ene	1330-20-7	AP-42	0.0	003	0.1	JO	22	2.05

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NC	ENR/Division of Air	Quality - Applica	ition for Air F	Permit to Cons	struct/Operate	е		В
ISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID NO	D:	CT-01	
Taurus 70-10802S Compressor Turbine, co	ntinued			CONTROL D	EVICE ID NO	(S):	CT-01-SCR a	nd CT-01-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-01	
DESCRIBE IN DETAILTHE EMISSION SOURCE F Natural gas fired compressor turbine used to boost	•			e.				
TYPE OF EMISSION SOL	JRCE (CHECK AND	COMPLETE APP	ROPRIATE F	ORM B1-B9 C	N THE FOLL	OWING PAGE	ES):	
Coal,wood,oil, gas, other burner (Form B1)	Woodworking		Manufact. of chemicals/coatings/inks (Form B7)					
☑ Int.combustion engine/generator (Form B2)	Coating/finish	ing/printing (Form	B5)	☐ Incinerat	ion (Form B8)	•	` ,	
Liquid storage tanks (Form B3)	Storage silos/	bins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DATE: April 2017	OPERATION DAT		T	DATE MANU			2016 or Later	
MANUFACTURER / MODEL NO.:	Solar Turbines Ta			OP. SCHEDU		Y 7 DAY/W	K 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAR				MACT (SUBP				
PERCENTAGE ANNUAL THROUGHPUT (%): DE		T	N-AUG 25	SEP-NOV				
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STACK					<20	% OPACITY
CRITERIA	AIR POLLUTAN	TEMISSIONS	INFORMA	TION FOR	THIS SOUI	RCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See	Form B, Page	e 1, for criteri	a pollutant to	tals for this s	ource
CARBON MONOXIDE (CO)		Mfg						
LATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD								
OTHER		1						
HAZARDOUS	S AIR POLLUTA	NT EMISSION	S INFORM	IATION FO	R THIS SO	URCE		Siese In R
		SOURCE OF	EXPECTED ACTUAL POTENTIAL EMSSIONS					
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONTI	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Propylene oxide	75-56-9	AP-42	0.001	0.005	0.002	0.01	0.001	0.005
Toluene	108-88-3	AP-42	0.005	0.02	0.010	0.04	0.005	0.02
Xylene	1330-20-7	AP-42	0.003	0.01	0.005	0.02	0.003	0.01
								-
	R POLLUTANT I ATE EXPECTED AC			ALCOHOL STATE OF THE STATE OF T	The second secon	E		
	THE EXILECTED AC					, 1		,
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	Ib	/hr	lb/d	ıay	lb.	/yr
				See Form E	3, Page 1, for	TAP totals fo	r this source	
Attachments: (1) emissions calculations and supporting docu	mentation; (2) indicate a se any monitoring device	I requested state and s, gauges, or test por	federal enforce ts for this source	eable permit limit ce.	s (e.g. hours of	operation, emiss	sion rates) and de	escribe how

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of Air Q	ıality - Apı	plication for Air Perr	nit to Co	onstruct/Operate			B2
EMISSION SOURCE DESCRIPTION	: Taurus 70-10802S Compresso	Turbine		EMISS	ION SOURCE ID N	10:	CT-01	
				CONT	ROL DEVICE ID NO	D(S):	CT-01-SCR and	CT-01-OC
OPERATING SCENARIO 1 of 1				EMISS	ION POINT (STAC	K) ID NO(S):	EP-01	
CHECK ALL THAT APPLY	☐ EMERGENCY	☐ SPACE	HEAT		ELECTRICAL GEN	NERATION		
	PEAK SHAVER	☑ OTHER	R (DESCRIBE):	Natural	Gas Compressor	Turbine		
GENERATOR OUTPUT (KW):	N/A ANTIC	IPATED A	CTUAL HOURS OF	OPERAT	TION AS PEAK SHA	AVER (HRS/	YR): N/A	
ENGINE OUTPUT (HP): 11,107	7 horsepower output ISO							
TYPE ICE: GASOLINE ENGINE	☐ DIESEL ENGINE U	P TO 600	HP DIESEL	ENGINE	GREATER THAN	600 HP	DUAL FUEL	ENGINE
☑ OTHER (DESCRIBE): Natural Gas Compresso	Turbine			(complete below)			
ENGINE TYPE RICH BUF	RN 🖸 LEAN BURN			_				
EMISSION REDUCTION MODIFICATION	TIONS INJECTION TIMING	RETARD	☐ PREIG	NOITINE	CHAMBER COME	USTION	OTHER	
OR STATIONARY GAS TUR	BINE (complete below)	NATUR	RAL GAS PIPELINE O	OMPRE	ESSOR OR TURBI	NE (complete	below)	
FUEL NATURAL GAS	□ OIL ENGIR	E TYPE:	2-CYCLE LEAN	BURN	4-CYCLE	EAN 🖸	TURBINE	
OTHER (DESCRIBE):			4-CYCLE RICH	BURN	OTHER (D	ESCRIBE): _		
CYCLE: COGENERATION	☑ SIMPLE CONT	ROLS:	COMBUSTION	MODIFI	CATIONS (DESCR	IBE):		
☐ REGENERATIVE	☐ COMBINED NON	ELECTIVE	E CATALYTIC REDU	CTION	☐ SELECTIV	E CATALYT	IC REDUCTION	<u> </u>
CONTROLS:	TEAM INJECTION CLEA	N BURN A	ND PRECOMBUSTION	ON CHA	MBER 🗌	UNCONTRO	DLLED	
☐ UNCONTROLLED ☑	LEAN-PREMIX		xidation catalyst					
	FUEL USAGE	(INCLU	DE STARTUP/B/	ACKUF	P FUEL)			
	ĺ		MAXIMUM DESIGN		F	REQUESTED	CAPACITY	
FUEL TYPE	UNITS	- (CAPACITY (UNIT/HR	()		LIMITATION	(UNIT/HR)	
Natural Gas	MMBtu	_	96.00			N/	Α	
			 -					
	FUEL CHARACTERIST	CS (COI	MPLETE ALL TH	AT AR	E APPLICABL	E)		
						SULFUR	CONTENT	
FUEL TYPE	BTU/UNIT		UNITS			(% BY WEIGHT)		
Natural Gas	1,020		scf		0.0005			
	MANUFACTURER'S S	PECIFIC	EMISSION FAC	TORS	(IF AVAILABLE	≣)	NAME OF STREET	
POLLUTANT	NOX	CO	PM		PM10	VOC	Form	aldehyde
EMISSION FACTOR LB/UNIT	3.20	5.30	1.92		1.92	0.30	0.0	00288
UNIT	hour	hour	hour		hour	hou	г М	MBtu
DESCRIBE METHODS TO MINIM	NZE VISIBLE EMISSIONS DI	IRING ID	LING ORLOWIC	AD OP	ERATIONS:			
	MEE VIOIBLE EIMIGGIGITG BE	TAITO ID	LINO, ON LOW LO	7AD 01	LIVATIONS.			
COMMENTS:								

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 12/01/01 NCDENR/Divis	sion of Air	Quality - Ap	plication for Air	Permit to Co	nstruct/Operate		Γ	C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORI	M MUST BE	SEALED E	Y A PROFESSIO	NAL ENGIN	NER (P.E.) LICEN	SED IN I	NORTH CAR	OLINA.
CONTROL DEVICE ID NO: CT-01-SCR and CT-01-OC					SOURCE ID NO(S		CT-01	
EMISSION POINT (STACK) ID NO(S): EP-01			OF CONTROLS	1	NO.	OF		NITS 1
MANUFACTURER:		MODEL NO	D:		<u> </u>			
MANUFACTURE DATE:			D OPERATION D	ATE: Nove	mber 2018		· · · · ·	
OPERATING SCENARIO:	il potens		D CONSTRUCTION		April 2017			
1 of 1								
TYPE: AFTERBURNER REGENERATIVE TH	ERMAL OX	IDATION		RECL	JPERATIVE THER	MAL OX	IDATION	
X CATALYTIC OXIDAT								
EXPECTED LIFE OF CATALYST (YRS): TBD		OF DETEC	TING WHEN CAT	ALYST NEEL	OS REPLACMENT	:	TBD	
CATALYST MASKING AGENT IN AIR STREAM: HALOGEN	SILICO		SPHOROUS CO		HEAVY METAL			
TBD SULFUR	COMPOU	ND	OTHER		NONE			
TYPE OF CATALYST: TBD CATALYST VO	L (FT³):	TBD	VELOCITY T	HROUGH CA	ATALYST (FPS):	TBD		
SCFM THROUGH CATALYST:			· · · · · · · · · · · · · · · · · · ·					
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO OT	THER CON	TROL DEVI	CES AND SOUR	CES, AND A	TTACH DIAGRAM	OF SYS	TEM:	
Selective Catalyst Reduction and Oxidation Catalyst			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
POLLUTANT(S) COLLECTED:	NO _x		CO		VOC	_	Formaldehy	/de
BEFORE CONTROL EMISSION RATE (LB/HR):						_		
CAPTURE EFFICIENCY:		%		%		%		%
CONTROL DEVICE EFFICIENCY:	44	%	80	%	50	%	50	%
OVERALL SYSTEM EFFICIENCY:		%		%		- %		
EFFICIENCY DETERMINATION CODE:						-		
TOTAL EMISSION RATE (LB/HR) :						_		
RESSURE DROP (IN. H2O): MIN MAX		Ιουτ	LET TEMPERAT	URF (°F):	MIN		MAX	
INLET TEMPERATURE (°F): MIN MAX	•		IDENCE TIME (S		IAIIIA		IVIA	
INLET AIR FLOW RATE (ACFM): (SCFM):			BUSTION TEMP		E).			
COMBUSTION CHAMBER VOLUME (FT³):								· · · · · · · · · · · · · · · · · · ·
% EXCESS AIR:	•		T MOISTURE CO				0117	FLET
			CENTRATION (p		INLET		001	[LET
AUXILIARY FUEL USED:				······	MILLION BTU/HR)			
MAXIMUM ANNUAL FUEL USE: UNITS:			IMUM HOURLY F			UNITS		
ACTUAL ANNUAL FUEL USE: UNITS:		ACT	JAL HOURLY FU	IEL USE:	-	UNITS	:	
DESCRIBE METHOD USED TO INCREASE MIXING:								
DESCRIBE METHOD TO INSURE ADEQUATE START-UP TEMP	DEDATUBE							
DESCRIBE METHOD TO INSURE ADEQUATE START-OF TENIS	TERATURE	•						
DESCRIBE TEMPERATURE MONITORING DEVICES AND PRO	CEDURES:		·					
STACK TESTING PORTS: GNO GYES (INLET AND OU	TLET)							
DESCRIBE MAINTENANCE PROCEDURES:			all the same of the same		Williams		300000000000000000000000000000000000000	
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO T	HE CONTR	OL SYSTE	Λ:	- 3-40-				
TACH A DIACRAM OF THE BELATIONS UP OF THE SAME	OL BELLIA	TOUTO	1001011 00110	-(0)				
TTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTRI	OF DEVICE	: IUIISEM	ISSION SOURCE	=(5):				

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NCDI	ENR/Division of Air (Quality - Applica	ation for Air F	Permit to Con	struct/Operat	te	1905 5 00	В
ISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	D:	CT-02	
Centaur 50-6200LS Compressor Turbine					EVICE ID NO		CT-02-SCR	and CT-02-OC
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-02	
DESCRIBE IN DETAILTHE EMISSION SOURCE P Natural gas fired compressor turbine used to boost				e				
		gao a tranon	moorer promi	.				
TYPE OF EMISSION SOUI	RCE (CHECK AND C	OMPLETE APP	ROPRIATE E	ORM B1-B9 (ON THE FOLL	OWING PAG	ES).	
Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking (F		MOI MAIL!	Manufact. of chemicals/coatings/inks (Form B7)				
☑ Int.combustion engine/generator (Form B2)	☐ Coating/finishing	•	B5)					
Liquid storage tanks (Form B3)	Storage silos/bi	ns (Form B6)		Other (Fo	orm B9)			
	OPERATION DATE			DATE MANU			2016 or Later	•
MANUFACTURER / MODEL NO.: Solar Turbines Centaur 50-6200LS						Y 7 DAY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAR		` `		MACT (SUBP				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC			JN-AUG 25	SEP-NOV				
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC					<20	% OPACITY
CRITERIA A	IR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOL	IRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	LEMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	1.20	5.26	1.20	5.26	1.20	5.26
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42	1.20	5.26	1.20	5.26	1.20	5.26
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42	1.20	5.26	1.20	5.26	1.20	5.26
SULFUR DIOXIDE (SO2)		AP-42	0.20	0.89	0.20	0.894	0.20	0.89
NITROGEN OXIDES (NOx)		Mfg	1.19	5.20	2.13	9.31	1.19	5.20
RBON MONOXIDE (CO)		Mfg	1.87	8.19	4.57	20.04	1.87	8.19
LATILE ORGANIC COMPOUNDS (VOC)		Mfg	0.11	0.48	0.20	0.89	0.11	0.48
LEAD								
OTHER								
HAZARDOUS	AIR POLLUTAN	T EMISSION	IS INFORM	IATION FO	R THIS SC	DURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,3-Butadiene	106-99-0	AP-42	0.00001	0.00005	0.00002	0.0001	0.00001	0.00005
Acetaldehyde	75-07-0	AP-42	0.001	0.005	0.002	0.01	0.001	0.005
Acrolein	107-02-8	AP-42	0.0002	0.001	0.0003	0.001	0.0002	0.001
Benzene	71-43-2	AP-42	0.0003	0.001	0.001	0.003	0.0003	0.001
Ethylbenzene	100-41-4	AP-42	0.0008	0.004	0.002	0.01	0.001	0.004
Formaldehyde	50-00-0	Mfg.	0.08	0.33	0.15	0.66	0.08	0.33
Naphthalene	91-20-3	AP-42	0.00003	0.0002	0.0001	0.0003	0.00003	0.0002
PAH		AP-42	0.0001	0.0003	0.0001	0.001	0.0001	0.0003
TOXIC AIR	POLLUTANT E	MISSIONS II	VFORMAT	ION FOR T	HIS SOUR	CE		
INDICA	TE EXPECTED ACT	UAL EMISSION	S AFTER CO	NTROLS / LIN	ITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	1b.	/hr	lb/d	day	lb	o/yr
1,3-Butadiene	106-99-0	AP-42	0.00	0001	0.0	003	0.	.10
Acetaldehyde	75-07-0	AP-42	0.0	001	0.	03	9.	.23
Acrolein	107-02-8	AP-42	0.0	002	0.0	04	1.	.48
Ammonia	7664-41-7	Mfg.	0.	82	19	.63	7,16	65.68
Benzene	71-43-2	AP-42	0.0	003	0.0	108	2	.77
Formaldehyde	50-00-0	Mfg.	0.	08	1.	B2	66	4.78
Toluene	108-88-3	AP-42	0.0	003	0.	12	44	1.78
ene	1330-20-7	AP-42	0.0	002	0.0	06	22	2.05
A Alexander District					327.5			

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NCDENR/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ate		В
ISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID N	O:	CT-02	
Centaur 50-6200LS Compressor Turbine			CONTROL D	EVICE ID NO)(S):	CT-02-SCR ar	nd CT-02-OC
OPERATING SCENARIO 1 of 1			EMISSION F	OINT (STACE	() ID NO(S):	EP-02	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTACH F	LOW DIAGRA	VI):		<u> </u>			
Natural gas fired compressor turbine used to boost the pressure of natural	al gas in a transn	nission pipelin	ne.				
TYPE OF EMISSION SOURCE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9	ON THE FOLI	LOWING PAG	ES):	
Coal,wood,oil, gas, other burner (Form B1) Woodworking (F	orm B4)	☐ Manufact. of chemicals/coatings/inks (Form B7)					
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finishing	/printing (Form I	35)	☐ Incinerat	ion (Form B8)			
☐ Liquid storage tanks (Form B3) ☐ Storage silos/bin	s (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DATE April 2017 OPERATION DATE:	No	vember 2018	DATE MANU	IFACTURED:		2016 or Later	
MANUFACTURER / MODEL NO.: Solar Turbines Centa			OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WK	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): Yes, KKKK NE	SHAP (SUBPAR	RT?): No	MACT (SUBF	PART?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 MAR-I	MAY 25 JL	IN-AUG 25	SEP-NOV	25			
EXPECTED ANNUAL HOURS OF OPERATION: 8,760	VISIBLE STAC					<20	% OPACITY
CRITERIA AIR POLLUTANT	EMISSIONS	INFORMA	ATION FOR	THIS SOL	JRCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTE	ROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	Mfg/AP-42		300		2000		11, 21,
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	Mfg						
PARTICULATE MATTER<2.5 MICRONS (PM25)	Mfg						
SULFUR DIOXIDE (SO2)	AP-42						
NITROGEN OXIDES (NOx)	Mfg	See	Form B, Pag	e 1, for criteri	a pollutant to	tals for this so	ource
RBON MONOXIDE (CO)	Mfg						
LATILE ORGANIC COMPOUNDS (VOC)	Mfg						
LEAD							
OTHER							
HAZARDOUS AIR POLLUTAN	T EMISSION	IS INFORM	MATION FO	OR THIS SO	DURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONTR	ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Propylene oxide 75-56-9	AP-42	0.001	0.003	0.002	0.01	0.001	0.003
Toluene 108-88-3	AP-42	0.003	0.02	0.01	0.03	0.003	0.02
Xylene 1330-20-7	AP-42	0.002	0.01	0.003	0.01	0.002	0.01
		_					
TOXIC AIR POLLUTANT E	MISSIONS II	NFORMAT	ION FOR T	THIS SOUR	CE		(9.000.10
INDICATE EXPECTED ACT	UAL EMISSION	S AFTER CC	NTROLS / LII	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb	/hr	lb/	day	lb/	vr
			See Form E	3, Page 1, for	TAP totals fo	r this source	
				_			

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of	Air Quali	ity - Applica	ation for Air Pern	nit to Co	onstruct/Operate			В
EMISSION SOURCE DESCRIPTION:	Centaur 50-6200LS Com	pressor T	urbine		EMISS	ION SOURCE ID N	O:	CT-02	
					CONTR	ROL DEVICE ID NO	D(S):	CT-02-SCR a	and CT-02-
OPERATING SCENARIO 1 of 1					EMISS	ION POINT (STACI	K) ID NO(S):	EP-02	
CHECK ALL THAT APPLY	☐ EMERGENCY		SPACE HE	AT		ELECTRICAL GEN	IERATION		
	PEAK SHAVER	7	OTHER (D	ESCRIBE):	Natural	I Gas Compressor T	Γurbine		
GENERATOR OUTPUT (KW):	N/A	ANTICIPA	ATED ACTU	JAL HOURS OF (OPERAT	TION AS PEAK SHA	AVER (HRS/	YR): N/A	
	horsepower output ISO							,	
TYPE ICE: GASOLINE ENGINE		SINE UP	TO 600 HP	□ DIESEL	ENGINE	GREATER THAN	600 HP	DUAL FU	JEL ENGIN
☑ OTHER (DESCRIBE)						(complete below)			
ENGINE TYPE RICH BUR						()			
EMISSION REDUCTION MODIFICAT	_		ETARD	☐ PREIG	NOITINE	CHAMBER COMB	USTION	☐ OTHER	ł
OR STATIONARY GAS TUR		-				SSOR OR TURBIN			
FUEL NATURAL GAS				2-CYCLE LEAN		4-CYCLE L		TURBINE	
OTHER (DESCRIBE):		LITORILE		4-CYCLE RICH		OTHER (D			
CYCLE: COGENERATION		CONTRO				CATIONS (DESCR			_
REGENERATIVE				ATALYTIC REDU				C REDUCTIO	— П [7]
	_			PRECOMBUSTION		_	UNCONTRO		W 🖸
	LEAN-PREMIX	0223 1111		ation catalyst	311 3111			, , , , , , , , , , , , , , , , , , ,	
		SAGE (I		STARTUP/B/	ACKUF	P FUEL)	DESTRUCTION OF THE PARTY OF THE	L. E. Politi	
				XIMUM DESIGN			REQUESTED	CAPACITY	
FUEL TYPE	UNITS			ACITY (UNIT/HR	1		LIMITATION		
Natural Gas	MMBtu								
Natural Gas	MMBtu			60.0			N//	4	
	F								
	FUEL CHARACTE	RISTIC	S (COMP	LETE ALL TH	AT AF	E ADDI ICARI	E)	3,-1,-, -10-	
	TOLE GITALOGICA	NO 110	3 (001111	ELIL ALL III	ואו אוי	L AI I LIOADE		001177117	
FUEL TYPE	BTU/UNIT			UNITS				CONTENT	
				UNITS			(% BY W		
Natural Gas	1,020			scf			0.00	05	
	ASANUE A OTUDES	VA 005	OIFIO FI	1001011540	TODO	//E 43/44/ 45/ 5	-,		
	MANUFACTURER				IORS	·	·		
POLLUTANT	NOX		00	PM		PM10	VOC		ormaldehy
EMISSION FACTOR LB/UNIT	1.98	3	.30	1.20		1.20	0.19	9	0.00288
UNIT	hour	h	our	hour		hour	hou	r	MMBtu
COMMENTS:									

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 12/01/01 NCDENR/Divi	sion of Air	Quality - App	lication for Air P	ermit to Co	onstruct/Operate			C3
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FOR	M MUST BE	SEALED BY	A PROFESSIOI	VAL ENGIN	INER (P.E.) LICEN	SED IN I	NORTH CARC	OLINA.
CONTROL DEVICE ID NO: CT-02-SCR and CT-02-OC	CONTROL	S EMISSION	S FROM WHICH	EMISSION	SOURCE ID NO(S):	CT-02	
EMISSION POINT (STACK) ID NO(S): EP-02	POSITION	IN SERIES C	F CONTROLS	1	NO.	OF	UI	NITS 1
MANUFACTURER:		MODEL NO:						
MANUFACTURE DATE:		PROPOSED	OPERATION DA	TE: Nove	ember 2018			
OPERATING SCENARIO:		PROPOSED	CONSTRUCTIO	N DATE:	April 2017			
1 of 1								
TYPE: AFTERBURNER REGENERATIVE TH	IERMAL OX	IDATION		REC	UPERATIVE THER	MAL OX	IDATION	_
X CATALYTIC OXIDAT	TION							
EXPECTED LIFE OF CATALYST (YRS): TBD	METHOD	OF DETECTI	NG WHEN CATA	LYST NEE	DS REPLACMENT	:	TBD	
CATALYST MASKING AGENT IN AIR STREAM: HALOGEN	SILICO		PHOROUS COM	IPOUND	HEAVY METAL			
	R COMPOU		OTHER		NONE			
TYPE OF CATALYST: TBD CATALYST VO	L (FT³):	TBD	VELOCITY TH	ROUGH C	ATALYST (FPS):	TBD		
SCFM THROUGH CATALYST:								<u></u>
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO O	THER CON	TROL DEVICE	S AND SOURCE	ES, AND A	TTACH DIAGRAM	OF SYS	TEM:	
Selective Catalyst Reduction and Oxidation Catalyst	No							
POLLUTANT(S) COLLECTED:	NO _x		CO		VOC	_	Formaldehy	de
BEFORE CONTROL EMISSION RATE (LB/HR):						_		
CAPTURE EFFICIENCY:		%		%		_%		%
CONTROL DEVICE EFFICIENCY:	44	%	80	<u></u> %	50	_%	50	%
OVERALL SYSTEM EFFICIENCY:		%		%		_%		%
EFFICIENCY DETERMINATION CODE:						_		
TOTAL EMISSION RATE (LB/HR) :						,		
RESSURE DROP (IN. H2O): MIN MAX		OUTL	ET TEMPERATU	RE (°F):	MIN	ı	MAX	_
INLET TEMPERATURE (°F): MIN MAX		RESID	ENCE TIME (SE	CONDS):				
INLET AIR FLOW RATE (ACFM): (SCFM):		СОМЕ	SUSTION TEMPE	RATURE (°F):		_	
COMBUSTION CHAMBER VOLUME (FT3):		INLET	MOISTURE COI	NTENT (%)	:			
% EXCESS AIR:		CONC	ENTRATION (pp	mv)	INLET		OUT	LET
AUXILIARY FUEL USED:		TOTAL	MAXIMUM FIRI	NG RATE ((MILLION BTU/HR)	:		
MAXIMUM ANNUAL FUEL USE: UNITS:		MAXIN	NUM HOURLY FL	JEL USE:		UNITS		
ACTUAL ANNUAL FUEL USE: UNITS:		ACTU	AL HOURLY FUE	L USE:		UNITS	:	
DESCRIBE METHOD USED TO INCREASE MIXING:								
DESCRIBE METHOD TO INSURE ADEQUATE START-UP TEMI	PERATURE							
	<u>.</u>							
DESCRIBE TEMPERATURE MONITORING DEVICES AND PRO	CEDURES:							
STACK TESTING PORTS: GNO GYES (INLET AND OU	TLET)							
DESCRIBE MAINTENANCE PROCEDURES:								
DISCHARGE TROOPS AND THE STATE OF THE STATE								
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO T	THE CONTE	OL EVETER						
DESCRIBE ANT AUXILIARY MATERIALS INTRODUCED INTO I	HE CONTR	OL SYSTEM:						
TTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTR	OL DEVICE	TO ITS EMIS	SION SOURCE	(\$):	·	37 - 12 IV -		

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	DENR/Division of Air (Quality - Applica	ation for Air P	ermit to Con	struct/Operat	е		В	
ISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	0:	CT-03		
Centaur 40-4700S Compressor Turbine				CONTROL D	EVICE ID NO	(S):	CT-03-SCR	and CT-03-OC	
OPERATING SCENARIO 1 of 1				EMISSION F	OINT (STACE	() ID NO(S):	EP-03		
DESCRIBE IN DETAILTHE EMISSION SOURCE F	PROCESS (ATTACH FL	OW DIAGRAM)	:	<u> </u>		, , ,			
Natural gas fired compressor turbine used to boost	t the pressure of natural	gas in a transm	ission pipeline	э.					
1									
TYPE OF EMISSION SO	URCE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9 C	N THE FOLL	OWING PAGE	S):		
Coal,wood,oil, gas, other burner (Form B1)						f chemicals/coatings/inks (Form B7)			
☑ Int.combustion engine/generator (Form B2)	Coating/finishing	printing (Form E	35)		ion (Form B8)	•	, , , , ,		
Liquid storage tanks (Form B3)	Storage silos/bin		·	Other (F	orm B9)				
START CONSTRUCTION DATE: April 201	7 OPERATION DATE:	No	ovember 2018	DATE MANU	JFACTURED:		2016 or Late		
MANUFACTURER / MODEL NO.:	Solar Turbines Centa	ur 40-4700S	EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W			
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAR	RT?): Yes, KKKK NES	HAP (SUBPAR		MACT (SUBPA					
PERCENTAGE ANNUAL THROUGHPUT (%): DE			N-AUG 25	SEP-NOV					
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC				ATION:	<20	% OPACITY	
CRITERIA	AIR POLLUTANT							70 01710111	
		SOURCE OF		D ACTUAL			L EMSSIONS		
		EMISSION		ROLS / LIMITS)	(BEEODE CON		I		
AIR POLLUTANT EMITTED		FACTOR	lb/hr		lb/hr	ROLS / LIMITS)		TROLS / LIMITS)	
PARTICULATE MATTER (PM)		Mfg/AP-42	1.02	tons/yr 4.47	1.02	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	Mfg/AP-42	1.02	4.47		4.47	1.02	4.47	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})			1.02		1.02	4.47	1.02	4.47	
SULFUR DIOXIDE (SO2)		Mfg/AP-42 AP-42	0.17	4.47	1.02	4.47	1.02	4.47	
NITROGEN OXIDES (NOx)				0.76	0.17	0.76	0.17	0.76	
CARBON MONOXIDE (CO)		Mfg	1.01	4.44	5.02	22.01	1.01	4.44	
LATILE ORGANIC COMPOUNDS (VOC)		Mfg	1.66	7.29	6.92	30.31	1.66	7.29	
ILEAD		Mfg	0.09	0.41	0.17	0.76	0.09	0.41	
OTHER				-		_			
	S AIR POLLUTAN	T EMISSION	C INICODM	ATION FO	D TUIC CO	UDCE		· · · · · · · · · · · · · · · · · · ·	
MAZAKDOOK	JAINTOLLOTAN	7			K ITIS SU				
		SOURCE OF		D ACTUAL		1	L EMSSIONS		
HAZADDOUS AID DOUGUTANT AND CAS NO		EMISSION		ROLS / LIMITS)	(BEFORE CONT			ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
1,3-Butadiene	106-99-0	AP-42	0.00001	0.00004	0.00002	0.0001	0.00001	0.00004	
Acetaldehyde	75-07-0	AP-42	0.001	0.004	0.002	0.01	0.001	0.004	
Acrolein	107-02-8	AP-42	0.0001	0.0006	0.0003	0.001	0.0001	0.001	
Benzene	71-43-2	AP-42	0.0003	0.001	0.001	0.002	0.0003	0.001	
Ethylbenzene	100-41-4	AP-42	0.001	0.003	0.001	0.01	0.001	0.003	
Formaldehyde	50-00-0	Mfg.	0.06	0.27	0.12	0.54	0.06	0.27	
Naphthalene	91-20-3	AP-42	0.00003	0.0001	0.0001	0.0002	0.00003	0.0001	
PAH		AP-42	0.00005	0.0002	0.0001	0.000	0.0000	0.0002	
	R POLLUTANT EN					CE			
	ATE EXPECTED ACTU	JAL EMISSIONS	AFTER CON	NTROLS / LIM	ITATIONS		_		
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb/	hr hr	lb/d	day	lt	o/yr	
1,3-Butadiene	106-99-0	AP-42	0.00	0001	0.00	002	0	.08	
Acetaldehyde	75-07-0	AP-42	0.0	009	0.0	02	7	.51	
Acrolein	107-02-8	AP-42	0.0	001	0.0	03	1.	.20	
Ammonia	7664-41-7	Mfg.	0.0	69	16.	56	6,044.40		
Benzene	71-43-2	AP-42	0.0	003	0.006		2.25		
Formaldehyde	50-00-0	Mfg.	0.0	62	1.48		541.00		
Toluene	108-88-3	AP-42	0.0	03	0.07		24.42		
Xylene	1330-20-7	AP-42	0.0	01	0.07		12.02		
1000-20-1 AF-42 U.001									

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 12/01/01 NCD	ENR/Division of Air	Quality - Appli	cation for Ai	r Permit to Co	onstruct/Ope	rate		B	
ISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: CT-03						
Centaur 40-4700S Compressor Turbine				CONTROL D	EVICE ID NO)(S):	CT-03-SCR a	and CT-03-OC	
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STACE	() ID NO(S):	EP-03		
DESCRIBE IN DETAILTHE EMISSION SOURCE Natural gas fired compressor turbine used to be	•		•	ipeline.					
TYPE OF EMISSION SOL	IRCE (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FO	LLOWING PA	GES):		
Coal,wood,oil, gas, other burner (Form B1)		(Form B4)	☐ Manufact. of chemicals/coatings/inks (Form B7)						
☐ Int.combustion engine/generator (Form B2)	Coating/finishin	ng/printing (Forn	n B5)	Incinerat	tion (Form B8)				
Liquid storage tanks (Form B3)	Storage silos/b	oins (Form B6)		Other (F	orm B9)	_			
START CONSTRUCTION DAT April 2017	OPERATION DATE			DATE MANU			2016 or Later	г	
MANUFACTURER / MODEL NO.:	Solar Turbines Cer	s Centaur 40-4700S EXPECTED OP. SCHEDULE: 24 HR/DAY 7 DAY/WK 52 WK/YR							
IS THIS SOURCE SUBJECT TO? NSPS (SUBP	ART?): Yes, KKKK	NESHAP (SUB	PART?): No	MACT (S	UBPART?): N	0			
PERCENTAGE ANNUAL THROUGHPUT (%): D	EC-FEB 25 MA	AR-MAY 25	JUN-AUG	25 SEP-N	OV 25				
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC	K EMISSION	NS UNDER NO	RMAL OPER	ATION:	<20	% OPACITY	
CRITERIA	AIR POLLUTAN	T EMISSION	S INFORM	IATION FO	R THIS SO	URCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS		
		EMISSION	(AFTER CONT	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		Mfg/AP-42							
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg							
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg							
SULFUR DIOXIDE (SO2)		AP-42							
NITROGEN OXIDES (NOx)		Mfg	See	Form B, Page	e 1, for criteri	ia pollutant to	otals for this	source	
RBON MONOXIDE (CO)		Mfg							
OLATILE ORGANIC COMPOUNDS (VOC)		Mfg							
LEAD									
OTHER									
HAZARDOUS	S AIR POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE			
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS		
		EMISSION	(AFTER CONT	TROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Propylene oxide	75-56-9	AP-42	0.001	0.003	0.001	0.01	0.001	0.003	
Toluene	108-88-3	AP-42	0.003	0.01	0.01	0.02	0.003	0.01	
Xylene	1330-20-7	AP-42	0.001	0.01	0.003	0.01	0.001	0.01	
				1					
TOXIC AI	R POLLUTANT I	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE			
INDIC	ATE EXPECTED AC	TUAL EMISSIO	NS AFTER C	CONTROLS / L	IMITATIONS				
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	o/hr	lb/	day	lt	o/yr	
				See Form E	3, Page 1, for	TAP totals fo	or this source	,	
achments: (1) emissions calculations and supporting of	ocumentation: (2) indica	ate all requested s	tate and foders	l enforceable as	mit limits (o.c.)	noure of opposit	an emission sets	ac) and describ-	

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division o	f Air Qual	ity - Application for Air Perr	nit to Construct/Operate			B2	
EMISSION SOURCE DESCRIPTION	Centaur 40-4700S Comp	pressor Tu	ırbine	EMISSION SOURCE ID I	NO:	CT-03		
				CONTROL DEVICE ID N	O(S):	CT-03-SCR and	CT-03-OC	
OPERATING SCENARIO 1 of 1	<u>-</u>			EMISSION POINT (STAC	CK) ID NO(S):	EP-03		
CHECK ALL THAT APPLY	☐ EMERGENCY		SPACE HEAT	☐ ELECTRICAL GE	NERATION			
	PEAK SHAVER	7	OTHER (DESCRIBE):	Natural Gas Compressor	Turbine			
GENERATOR OUTPUT (KW):	N/A	ANTICIPA	ATED ACTUAL HOURS OF (OPERATION AS PEAK SH	IAVER (HRS/	YR): N/A		
ENGINE OUTPUT (HP): 4,427	horsepower output ISO							
TYPE ICE: ☐ GASOLINE ENGINE ☑ OTHER (DESCRIBE)				ENGINE GREATER THAN	1 600 HP	DUAL FUEL	ENGINE	
ENGINE TYPE RICH BUR			IDITE	(complete below)				
EMISSION REDUCTION MODIFICAT			RETARD PREIG	NITION CHAMBER COM	BUSTION	OTHER		
OR STATIONARY GAS TUR			NATURAL GAS PIPELINE C					
FUEL NATURAL GAS	OIL		TYPE: 2-CYCLE LEAN			TURBINE		
OTHER (DESCRIBE):			4-CYCLE RICH		_			
CYCLE: COGENERATION	☑ SIMPLE	CONTRO	LS: COMBUSTION	MODIFICATIONS (DESCR			•	
☐ REGENERATIVE	☐ COMBINED	NONSEL	ECTIVE CATALYTIC REDU			C REDUCTION [J	
CONTROLS:	TEAM INJECTION	CLEAN 6	BURN AND PRECOMBUSTIC	ON CHAMBER	UNCONTRO	DLLED		
☐ UNCONTROLLED ☑	LEAN-PREMIX		and oxidation catalyst					
	FUEL U	SAGE (I	NCLUDE STARTUP/BA	ACKUP FUEL)				
			MAXIMUM DESIGN		REQUESTED	CAPACITY		
FUEL TYPE	UNITS		CAPACITY (UNIT/HR)	LIMITATION	(UNIT/HR)		
Natural Gas	MMBtu	51.0 N/A						
	FUEL CHARACTE	RISTIC	S (COMPLETE ALL TH	AT ARE APPLICABL	.E)			
FUEL TYPE	DTHAINT		LIMITO			CONTENT		
	BTU/UNIT		UNITS		(% BY W	EIGHT)		
Natural Gas	1,020		scf_		0.00	05		
	MANUEACTURE	ie ene	CIFIC EMISSION FACT	FORD (IF A) (A) I ARL	-1			
POLLUTANT	NOX		CIFIC EMISSION FACT					
EMISSION FACTOR LB/UNIT	4.70		O PM	PM10	VOC		naldehyde	
UNIT			.70 1.02	1.02	0.16		00288	
	hour	-	our hour	hour	hou	<u> </u>	MBtu	
DESCRIBE METHODS TO MINIM	IZE VISIBLE EMISSIO	NS DUR	NG IDLING, OR LOW LO	AD OPERATIONS:				
]	
COMMENTS								
			_					

FORM C3

CONTROL DEVICE (THERMAL OR CATALYTIC)

REVISED 12/01/01 NCDENR/Divi	sion of Air	Quality - Ap	plication for Air P	Permit to C	onstruct/Operate			C3			
AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORI	AS REQUIRED BY 15A NCAC 2Q .0112, THIS FORM MUST BE SEALED BY A PROFESSIONAL ENGINNER (P.E.) LICENSED IN NORTH CAROLINA.										
CONTROL DEVICE ID NO: CT-03-SCR and CT-03-OC	CONTROL	S EMISSIC	NS FROM WHICH	EMISSION	SOURCE ID NO(S	S): (CT-03				
EMISSION POINT (STACK) ID NO(S): EP-03	POSITION	IN SERIES	OF CONTROLS	1	NO.	OF	UN	NITS 1			
MANUFACTURER:		MODEL N	D:	· · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
MANUFACTURE DATE:		PROPOSE	D OPERATION DA	ATE:	November 2018						
OPERATING SCENARIO:		PROPOSE	D CONSTRUCTIO	N DATE:	April 2017						
1 of 1											
TYPE: AFTERBURNER REGENERATIVE TH	ERMAL OX	IDATION		REC	UPERATIVE THER	MAL OXID	ATION				
X CATALYTIC OXIDAT	ION										
EXPECTED LIFE OF CATALYST (YRS): TBD					DS REPLACMENT	-	TBD				
CATALYST MASKING AGENT IN AIR STREAM: HALOGEN	SILICON		SPHOROUS COM	IPOUND	HEAVY METAL						
	R COMPOUI	_	OTHER		NONE						
TYPE OF CATALYST: TBD CATALYST VOI	L (F1'):	TBD	VELOCITY TH	ROUGH C	ATALYST (FPS):	TBD					
DESCRIBE CONTROL SYSTEM, INCLUDING RELATION TO OT	THER CONT	TROL DEVI	CES AND SOURCE	EC AND A	TTACU DIACRAM	OF SYSTE	14.				
Selective Catalyst Reduction and Oxidation Catalyst	THER CON	I KOL DEVI	JES AND SOURCE	ES, AND A	ITACH DIAGRAM	OF 3131E	:IVI:				
POLLUTANT(S) COLLECTED:	NO _x		CO		VOC		Formaldehyo	10			
BEFORE CONTROL EMISSION RATE (LB/HR):							Torrialderiyo				
CAPTURE EFFICIENCY:											
		%		%		_% _		%			
CONTROL DEVICE EFFICIENCY:	80	%	90	%	50	_% -	50	 %			
OVERALL SYSTEM EFFICIENCY:		%		%		_% _		 %			
EFFICIENCY DETERMINATION CODE:											
TOTAL EMISSION RATE (LB/HR) :											
RESSURE DROP (IN. H2O): MIN MAX		TUO	LET TEMPERATU	IRE (°F):	MIN		MAX				
INLET TEMPERATURE (°F): MIN MAX		RES	IDENCE TIME (SE	CONDS):							
INLET AIR FLOW RATE (ACFM): (SCFM):		COV	MBUSTION TEMPE	RATURE (°F):						
COMBUSTION CHAMBER VOLUME (FT ³):		INLE	T MOISTURE COI	NTENT (%)	:						
% EXCESS AIR:		CON	ICENTRATION (pp	omv)	INLET		OUTL	.ET			
AUXILIARY FUEL USED:		тот	AL MAXIMUM FIRI	NG RATE ((MILLION BTU/HR)						
MAXIMUM ANNUAL FUEL USE: UNITS:		MAX	IMUM HOURLY FL	UEL USE:	**	UNITS:					
ACTUAL ANNUAL FUEL USE: UNITS:		ACT	UAL HOURLY FUE	EL USE:		UNITS:					
DESCRIBE METHOD USED TO INCREASE MIXING:											
DECORIDE METHOD TO INCHES A DECUATE OTABLE OF											
DESCRIBE METHOD TO INSURE ADEQUATE START-UP TEMP	PERATURE	:									
DESCRIBE TEMPERATURE MONITORING DEVICES AND PRO	CEDURES:										
						_					
STACK TESTING PORTS: GNO GYES (INLET AND OU	TLET)										
DESCRIBE MAINTENANCE PROCEDURES:											
								2400000			
DESCRIBE ANY AUXILIARY MATERIALS INTRODUCED INTO T	HE CONTR	OL SYSTE	VI:								
TTACH A DIAGRAM OF THE RELATIONSHIP OF THE CONTR	OL DEVICE	TO ITS EM	ISSION SOURCE	(S):							

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

PEVISED 12/01/01	NCDENR/Division of Air Q	tuality - Applica	ition for Air F	Permit to Con	struct/Operat	е		В
MISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	0:	EG-01	
Caterpillar G3516B Emergency Ge	enerator			CONTROL D	EVICE ID NO	(S):	NA	-
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STACE	() ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SO	OURCE PROCESS (ATTACH	FLOW DIAGRA	M):					
Natural gas fired emergency generator us	ed to provide power during em	ergency periods	when the prir	mary source of	f power to the	facility is unav	ailable.	
TYPE OF EMISSIO	N SOURCE (CHECK AND C	OMPLETE APP	ROPRIATE F	ORM B1-B9 (ON THE FOLL	OWING PAGI	ES):	
Coal,wood,oil, gas, other burner (Form	,	(Form B4)						
☑ Int.combustion engine/generator (Form		0.	g/printing (Form B5)					
Liquid storage tanks (Form B3)	☐ Storage silos/			Other (F	orm B9)			
START CONSTRUCTION DATE:	April 2017 OPERATION DAT	E: No	ovember 2018	DATE MANL	JFACTURED:		2016 or La	iter
MANUFACTURER / MODEL NO.:	Caterpillar G3516I			OP. SCHEDU	LE: 100 HR/Y	R		
IS THIS SOURCE SUBJECT TO? NSPS		SHAP (SUBPAF	RT?): No	MACT (SUBP	'ART?): Yes, Z	777		
PERCENTAGE ANNUAL THROUGHPUT	` '	-MAY 25 J	UN-AUG 25	SEP-NOV	/ 25			
EXPECTED ANNUAL HOURS OF OPERA		VISIBLE STAC					<20	% OPACITY
CRITE	RIA AIR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE	Andrew C	
		SOURCE OF	EXPECTE	D ACTUAL	1	POTENTIAL	EMSSION	S
1		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	ROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)
AIR POLLUTANT EMITTED	<u> </u>	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	0.638	0.032	0.638	0.032	0.638	0.032
PARTICULATE MATTER<10 MICRONS (PM	Mfg/AP-42	0.638	0.032	0.638	0.032	0.638	0.032	
PARTICULATE MATTER<2.5 MICRONS (PA	Mfg/AP-42	0.638	0.032	0.638	0.032	0.638	0.032	
SULFUR DIOXIDE (SO2)		AP-42	0.008	3.88E-04	0.008	3.88E-04	0.008	3.88E-04
NITROGEN OXIDES (NOx)		Mfg	2.00	0.100	2.00	0.100	2.00	0.100
ARBON MONOXIDE (CO)		Mfg	9.98	0.499	9.98	0.499	9.98	0.499
OLATILE ORGANIC COMPOUNDS (VOI	C)	Mfg	2.16	0.108	2.16	0.108	2.16	0.108
LEAD							ļ	
OTHER	OUIO AID DOLLUTAN		0 11/50 01/					
HAZARL	DOUS AIR POLLUTAN	T			R THIS SO		1 100	146 D
1		SOURCE OF		D ACTUAL		POTENTIAL	EMSSION	S
		EMISSION		ROLS / LIMITS)	(BEFORE CONT			NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,1,2,2-Tetrachloroethane	79-34-5	AP-42	0.0003	0.00002	0.0003	0.00002	0.0003	0.00002
1,1-Dichloroethane	79-00-5	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
1,2-Dichloroethane	75-34-3	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
1,2-Dichloropropane	107-06-2	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
1.3-Butadiene	78-87-5 106-99-0	AP-42 AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
1,3-Dichloropropene			0.004	0.0002	0.004	0.0002	0.004	0.0002
2,2,4-Trimethylpentane	542-75-6	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
	540-84-1 IC AIR POLLUTANT EN	AP-42	0.004	0.0002	0.004	0.0002	0.004	0.0002
TOXI	INDICATE EXPECTED ACTU					CE	de ancientario	
TOYIC AIR DOLLLIZANT AND CAC NO.	INDICATE EXPECTED ACTO				1			
1.1.2.2-Tetrachloroethane	70.04.5	EF SOURCE		/hr		day		lb/yr
1.2-Dichloroethane	79-34-5	AP-42		003		01		0.03
1,3-Butadiene	107-06-2 106-99-0	AP-42		0002		00		0.02
Acetaldehyde		AP-42		004		09		0.38
Acrolein	75-07-0	AP-42		04		86	3.59	
Benzene	107-02-8 71-43-2	AP-42		04	0.86		3.60	
Benzo(a)pyrene	50-32-8	AP-42 AP-42		00003	0.22		0.90 2.63E-06	
Carbon Tetrachloride	56-23-5	AP-42 AP-42		00003				
TOTAL TOTAL CONTINUES	30-23-3	MF-42	0.0	000	L 0.	01		0.03

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 12/01/01 NCDENR/Division of Air	Quality - Applie	cation for Air	Permit to Co	nstruct/Oper	ate		l B
MISSION SOURCE DESCRIPTION:	5.00	EMISSION S	SOURCE ID N	O:	EG-01		
Caterpillar G3516B Emergency Generator			CONTROL D	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1			EMISSION F	POINT (STACE	K) ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTA							
Natural gas fired emergency generator used to provide power during	g emergency per	riods when the	e primary sour	ce of power to	the facility is	unavailable	١.
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
Coal,wood,oil, gas, other burner (Form B1)					s/coatings/ink	s (Form B7)	1
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finish		m B5)		ion (Form B8))		
☐ Liquid storage tanks (Form B3) ☐ Storage silos			Other (F				
START CONSTRUCTION DAT April 2017 OPERATION DA			DATE MANU			2016 or La	ter
MANUFACTURER / MODEL NO.: Caterpillar G3516			OP. SCHEDU				
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): Yes, JJJJ				JBPART?): Y	es, ZZZZ		
	AR-MAY 25	JUN-AUG		NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 100	VISIBLE STAC					<20	% OPACITY
CRITERIA AIR POLLUTAN	T			t THIS SU			
	SOURCE OF		D ACTUAL		POTENTIAL	. EMSSIONS	S
AID DOLLUTANT ENGINEER	EMISSION	****	ROLS / LIMITS)		TROLS / LIMITS)		NTROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM ₁₀)	Mfg/AP-42						
PARTICULATE MIATTER < 10 MICRONS (PM ₁₀) PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5})	Mfg/AP-42						
SULFUR DIOXIDE (SO2)	Mfg/AP-42						
NITROGEN OXIDES (NOx)	AP-42	S00 E	orm B, Page	1 for oritoria	nollutant tot	ala far thia	
ARBON MONOXIDE (CO)	Mfg	3661	onii b, raye	i, ioi criteria	ponutant tot	ais ior uiis	Source
TVOLATILE ORGANIC COMPOUNDS (VOC)	Mfg						
LEAD	Mfg						
OTHER	 						
HAZARDOUS AIR POLLUTAI	NT FMISSIO	NS INFORI	MATION FO	OR THIS S	OURCE		
	SOURCE OF		D ACTUAL		POTENTIAL	EMESIONS	
	EMISSION		ROLS / LIMITS)	(BEEODE CON	TROLS / LIMITS)	ı	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Acetaldehyde 75-07-0	AP-42	0.04	0.002	0.04	0.002	0.04	0.002
Acrolein 107-02-8	AP-42	0.04	0.002	0.04	0.002	0.04	0.002
Benzene 71-43-2	AP-42	0.01	0.0004	0.01	0.0004	0.01	0.0004
Biphenyl 92-52-4	AP-42	0.00002	0.000001	0.00002	0.000001	0.00002	0.000001
Carbon Tetrachloride 56-23-5	AP-42	0.0003	0.00001	0.0003	0.00001	0.0003	0.00001
Chlorobenzene 108-90-7	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
Chloroform 67-66-3	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
Ethylbenzene 100-41-4	AP-42	0.0005	0.00002	0.00	0.00002	0.0005	0.00002
TOXIC AIR POLLUTANT E	MISSIONS	NFORMAT	ION FOR	THIS SOUP	RCE		The sale
INDICATE EXPECTED AC	TUAL EMISSIOI	NS AFTER CO	ONTROLS / LI	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb.	/hr	ib/e	day	1	lb/yr
Chlorobenzene 108-90-7	AP-42		002		005		0.02
Chloroform 67-66-3	AP-42	0.0	002		005		0.02
Ethylene Dibromide 106-93-4	AP-42	0.0	003	0.0	081		0.03
Formaldehyde 50-00-0	AP-42	0.	26	6.	13	2	25.53
Hexane (or n-Hexane) 110-54-3	AP-42	0.0	002	0.	05	(0.21
Methylene Chloride 75-09-2	AP-42	0.0	007	0.	02	(0.07
Phenol 108-95-2	AP-42	0.0	002	0.0	005	(0.02
stachments: (1) emissions calculations and supporting documentation: (2) India			1				

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	IR/Division of Air	Quality - Applic	cation for Air	Permit to Co	nstruct/Oper	ate		l B
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	O:	EG-01	
Caterpillar G3516B Emergency Generator				CONTROL	DEVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STAC	K) ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE Natural gas fired emergency generator used to pr				e primary soul	ce of power to	the facility is	unavailable) .
TYPE OF EMISSION SOURCE	E (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1)	Woodworking	(Form B4)		Manufac	t. of chemical	s/coatings/ink	s (Form B7))
☑ Int.combustion engine/generator (Form B2) ☐ Liquid storage tanks (Form B3)	Coating/finish Storage silos/		m B5)	☐ Incinera ☐ Other (F	tion (Form B8) orm B9))		
START CONSTRUCTION DAT April 2017	OPERATION DAT	ΓE: No	vember 2018	DATE MANU	JFACTURED:		2016 or La	iter
MANUFACTURER / MODEL NO.:	Caterpillar G3516	В	EXPECTED	OP. SCHEDL	ILE: 100 HR/Y	'R		
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA	RT?): Yes, JJJJ	NESHAP (SUB	PART?): No	MACT (S	UBPART?): Y	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%): DE	C-FEB 25 M	IAR-MAY 25	JUN-AUG	25 SEP-	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION:	100	VISIBLE STAC	K EMISSION	IS UNDER NO	RMAL OPER	ATION:	<20	% OPACITY
CRITERIA AII	R POLLUTANT	EMISSIONS	SINFORM	ATION FO	R THIS SO	JRCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42	O _j					
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		Mfg	See F	orm B, Page	1, for criteria	pollutant tot	als for this	source
ARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD								
OTHER								
HAZARDOUS A	IR POLLUTAN	NT EMISSIOI	VS INFORI	MATION FO	OR THIS S	DURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Ethylene Dibromide	106-93-4	AP-42	0.0003	0.00002	0.0003	0.00002	0.0003	0.00002
Formaldehyde	50-00-0	AP-42	0.26	0.01	0.26	0.01	0.26	0.01
Hexane (or n-Hexane)	110-54-3	AP-42	0.002	0.0001	0.002	0.0001	0.002	0.0001
Methanol	67-56-1	AP-42	0.011	0.0006	0.01	0.0006	0.01	0.0006
Methylene Chloride	75-09-2	AP-42	0.001	0.00003	0.001	0.00003	0.001	0.00003
Naphthalene	91-20-3	AP-42	0.0004	0.00002	0.0004	0.00002	0.0004	0.00002
PAH		AP-42	0.0006	0.00003	0.0006	0.00003	0.0006	0.00003
Phenol	108-95-2	AP-42	0.0002	0.00001	0.0002	0.00001	0.0002	0.00001
	POLLUTANT E					RCE		
INDICATI	E EXPECTED ACT	TUAL EMISSION	IS AFTER CO	ONTROLS / LI	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb.	/hr	lb/	day	1	lb/yr
Styrene	100-42-5	AP-42	0.0	003	0.0	006	(0.03
Toluene	108-88-3	AP-42	0.0	004	0.	11	(0.45
Vinyl Chloride	75-01-4	AP-42		001	0.0	003	(0.01
Xylene	1330-20-7	AP-42	0.0	001	0.	03	(0.12
Attachments: (1) emissions calculations and supporting do	cumentation: (2) indic	cate all requested :	state and federa	al enforceable o	ormit limits /o.a.	hours of anorat	ion emission	mtoc) and

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

	NR/Division of Air	Quality - Applic	ation for Air	Permit to Co	nstruct/Oper	rate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N	10:	EG-01	
Caterpillar G3516B Emergency General	or			CONTROLE	EVICE ID NO	D(S):	NA	
OPERATING SCENARIO 1 of 1		-		EMISSION F	POINT (STAC	K) ID NO(S):	EP-04	
DESCRIBE IN DETAILTHE EMISSION SOURCE	E PROCESS (ATTA	CH FLOW DIAG	SRAM):					
Natural gas fired emergency generator used to	provide power during	emergency per	riods when the	e primary sour	ce of power to	o the facility is	unavailable	l.
TYPE OF EMISSION SOU	RCE (CHECK AND C	COMPLETE API	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking			Manufac	t. of chemica	ls/coatings/ink	s (Form B7))
☑ Int.combustion engine/generator (Form B2)	Coating/finish	0. 0.	m B5)		tion (Form B8)		
Liquid storage tanks (Form B3)	Storage silos			Other (F	orm B9)			
	17 OPERATION DAT	_	vember 2018	DATE MANL	JFACTURED:		2016 or La	ter
MANUFACTURER / MODEL NO.:	Caterpillar G3516			OP. SCHEDU				
IS THIS SOURCE SUBJECT TO? NSPS (SUBI					UBPART?): Y	es, ZZZZ		
PERCENTAGE ANNUAL THROUGHPUT (%):		AR-MAY 25	JUN-AUG		NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION		VISIBLE STAC					<20	% OPACITY
CRITERIA A	IR POLLUTANT			ATION FOR	THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	5
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	ITROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42						
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		Mfg/AP-42						
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)	-	Mfg	See F	orm B, Page	1, for criteria	a pollutant to	als for this	source
ARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD								
OTHER	AID DOLLUTAL	I FINISCIO	NO INCODE	MATIONIC	2D TIIIO O	OUBOE	111111111111	
HAZARDOUS	AIR POLLUTAI	1			JR I IIIS S			
		SOURCE OF	l	D ACTUAL		POTENTIAL	ı	
HAZADDOUG AID DOLLUTANT AND GAO NO		EMISSION		ROLS / LIMITS)		TROLS / LIMITS)	-	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Styrene Toluene	100-42-5	AP-42	0.0003	0.00001	0.0003	0.00001	0.0003	0.00001
Vinyl Chloride	108-88-3	AP-42	0.004	0.0002	0.004	0.0002	0.004	0.0002
Xylene	75-01-4	AP-42	0.0001	0.000006	0.0001	0.000006	0.0001	0.000006
Aylerie	1330-20-7	AP-42	0.001	0.00006	0.001	0.00006	0.001	0.00006
		-		 				
						_	-	
- ***								
TOYIC AU	R POLLUTANT E	MISSIONS	NEORMAT	TION FOR	THIS SOLI	PCE	TIMES IN SEC	
	TE EXPECTED ACT					TOL		
TOXIC AIR POLLUTANT AND CAS NO.	TIE EXI EGIED AG				1	/da.	1	lle 6 ce
TOXIC AIR FOLLUTANT AND CAS NO.		EF SOURCE	10	/hr	I IDA	/day		lb/yr
		1						
		1						
		-	San For	m P. Damas 1	2 for TAD #	stala for this e	2011200	
10 1000		1	See FUII	пр, rages 1	J, IUI IAP (otals for this s	ource	
	-	1						
		1						
Hophmonto: (1) omissions calculations and a series in the	dogumentation (O) to m	la.	-t-t	al autores 11	- 14 P - 17 - 1	have of		4>
Attachments: (1) emissions calculations and supporting describe how these are monitored and with what freque						i. nours or opera	uon, emission	rates) and

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01	NCDENR/Division of Ai	ir Quali	ty - Application for Air Perm	it to Construct/Operate			B2		
EMISSION SOURCE DESCRIPTION:	Caterpillar G3516B Emerge	ncy Ge	nerator	EMISSION SOURCE ID N	10:	EG-01			
				CONTROL DEVICE ID NO	O(S):	NA			
OPERATING SCENARIO 1 of 1				EMISSION POINT (STAC	K) ID NO(S):	EP-04			
CHECK ALL THAT APPLY	EMERGENCY DEAK SHAVER		SPACE HEAT OTHER (DESCRIBE):	ELECTRICAL GEN	NERATION				
GENERATOR OUTPUT (KW):	1,300 AN	NTICIPA	ATED ACTUAL HOURS OF O	PERATION AS PEAK SHA	VER (HRS/Y	R): N/A			
ENGINE OUTPUT (HP): 1,818									
TYPE ICE: GASOLINE ENGINE OTHER (DESCRIBE)	DIESEL ENGIN		O 600 HP DIESEL I	ENGINE GREATER THAN (complete below)	600 HP [DUAL FUEL	ENGINE		
ENGINE TYPE RICH BUR		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(somplete selett)					
EMISSION REDUCTION MODIFICATI		IING R	ETARD PREIG	NITION CHAMBER COME	USTION	OTHER Air	fuel ratio		
OR STATIONARY GAS TURE	BINE (complete below)	ay US	NATURAL GAS PIPELINE C						
FUEL NATURAL GAS	OIL EN	IGINE 1			EAN 🔲	•			
☐ OTHER (DESCRIBE): ☐ 4-CYCLE RICH BURN ☐ OTHER (DESCRIBE):									
CYCLE: COGENERATION SIMPLE CONTROLS: COMBUSTION MODIFICATIONS (DESCRIBE):									
☐ REGENERATIVE [ECTIVE CATALYTIC REDUC			C REDUCTION					
CONTROLS:	TEAM INJECTION CI	LEAN B	BURN AND PRECOMBUSTIO	N CHAMBER	UNCONTRO	DLLED []	_		
☐ UNCONTROLLED ☐	LEAN-PREMIX								
	FUEL USA	GE (II	NCLUDE STARTUP/BA	ACKUP FUEL)	30 30 1 A				
			MAXIMUM DESIGN		REQUESTED	CAPACITY			
FUEL TYPE	UNITS								
Natural Gas	MMBtu		14.9		N/A				
	FUEL CHARACTERI	STICS	(COMPLETE ALL TH	AT ARE APPLICABL	E)				
					SULFUR	CONTENT			
FUEL TYPE	BTU/UNIT		UNITS		(% BY W	EIGHT)			
Natural Gas	1,020		scf		0.00	05			
	MANUFACTURER'S	SPE	CIFIC EMISSION FACT	TORS (IF AVAILABLE	≣)				
POLLUTANT	NOX	C	CO PM	PM10	VOC		THER		
EMISSION FACTOR g/hp-hr	0.50	2	.49 NA	NA	0.54	1			
UNIT	g/hp-hr	g/h	p-hr		g/hp-	hr			
DESCRIBE METHODS TO MINIMIZE VISIBLE EMISSIONS DURING IDLING, OR LOW LOAD OPERATIONS:									
COMMENTS:									
I'									

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division of Air	Quality - Applica	ation for Air F	Permit to Con	struct/Operat	е		В
MISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID N	O:	EG-02	
Generac SG100 Emergency Generator			CONTROL	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1			EMISSION F	OINT (STACE	() ID NO(S):	EP-05	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTAC							
Natural gas fired emergency generator used to provide power during e	mergency periods	when the prin	mary source of	power to the	facility is unav	ailable.	
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE ADD	DODDIATE E	ODM D4 D0 6		04440 040		
Coal,wood,oil, gas, other burner (Form B1) Woodworkin		ROPRIATE F				-	
	,	(Form B4) Manufact. of chemicals/coatings/inling/printing (Form B5) Incineration (Form B8)				(FOIII 67)	
	bins (Form B6)						
START CONSTRUCTION DATE: April 2017 OPERATION DA		ovember 2018	. – 			2016 or La	tor
MANUFACTURER / MODEL NO.: Generac SG100		E: November 2018 DATE MANUFACTURED: 2016 or La EXPECTED OP. SCHEDULE: 100 HR/YR					
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): Yes, JJJJ N	SHAP (SURPAR						
							WAA-1
EXPECTED ANNUAL HOURS OF OPERATION: 100	VISIBLE STAC				ATION:	<20	% OPACITY
CRITERIA AIR POLLUTANT						-2.0	70 OF AOTT
	SOURCE OF	T	D ACTUAL		POTENTIAL	EMSSIONS	2
	EMISSION		ROLS / LIMITS)	(BEEODE CON	ROLS / LIMITS)	1	NTROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	Ib/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	AP-42	0.052	0.003	0.052	0.003	0.052	0.003
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	AP-42	0.052	0.003	0.052	0.003	0.052	0.003
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	AP-42	0.052	0.003	0.052	0.003	0.052	0.003
SULFUR DIOXIDE (SO2)	AP-42	0.001	3.18E-05	0.001	3.18E-05	0.001	3.18E-05
NITROGEN OXIDES (NOx)	Mfg	0.001	4.92E-05	0.001	4.92E-05	0.001	4.92E-05
ARBON MONOXIDE (CO)	Mfg	0.020	0.001	0.020	0.001	0.020	0.001
OLATILE ORGANIC COMPOUNDS (VOC)	Mfg	0.056	0.003	0.056	0.003	0.056	0.003
LEAD	1		5.555	0.000	5,555	0.000	0.000
OTHER							
HAZARDOUS AIR POLLUTAN	IT EMISSION	S INFORM	ATION FO	R THIS SO	URCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
	EMISSION		ROLS / LIMITS)	(BEFORE CON	ROLS / LIMITS)	ı	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
1,1,2,2-Tetrachloroethane 79-34-5	AP-42	2.51E-05	1.26E-06	2.51E-05	1.26E-06	2.51E-05	1.26E-06
1,1,2-Trichloroethane 79-00-5	AP-42	2.00E-05	9.98E-07	2.00E-05	9.98E-07	2.00E-05	9.98E-07
1,1-Dichloroethane 75-34-3	AP-42	1.48E-05	7.41E-07	1.48E-05	7.41E-07	1.48E-05	7.41E-07
1,2-Dichloroethane 107-06-2	AP-42	1.60E-05	7.99E-07	1.60E-05	7.99E-07	1.60E-05	7.99E-07
1,2-Dichloropropane 78-87-5	AP-42	1.69E-05	8.45E-07	1.69E-05	8.45E-07	1.69E-05	8.45E-07
1,3-Butadiene 106-99-0	AP-42	3.11E-04	1.55E-05	3.11E-04	1.55E-05	3.11E-04	1.55E-05
1,3-Dichloropropene 542-75-6	AP-42	1.66E-05	8.30E-07	1.66E-05	8.30E-07	1.66E-05	8.30E-07
2,2,4-Trimethylpentane 540-84-1	AP-42	3.21E-04	1.60E-05	3.21E-04	1.60E-05	3.21E-04	1.60E-05
TOXIC AIR POLLUTANT E	MISSIONS IN	IFORMATI	ON FOR T	HIS SOUR	CE		
INDICATE EXPECTED AC	TUAL EMISSION	S AFTER COI	NTROLS / LIN	IITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb	/hr	lb/e	day		lb/yr
1,1,2,2-Tetrachloroethane 79-34-5	AP-42	2.51	E-05		E-04		.003
1,2-Dichloroethane 107-06-2	AP-42		E-05		E-04		.002
1,3-Butadiene 106-99-0	AP-42		E-04		07		0.031
Acetaldehyde 75-07-0	AP-42		003	0.0			.294
Acrolein 107-02-8	AP-42	0.0	003	0.071		0.295	
Benzene 71-43-2	AP-42	7.35	E-04	0.018		0.073	
Benzo(a)pyrene 50-32-8	AP-42	2.15	E-09	5.16E-08		2.15E-07	
arbon Tetrachloride 56-23-5	AP-42	2.81	E-04	0.007		0.028	

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

File and the second sec	ENR/Division of Air	Quality - Applie	cation for Air	Permit to Co	nstruct/Oper	ate		В
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	O:	EG-02	
Generac SG100 Emergency Generator				CONTROL	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION F	OINT (STACI	K) ID NO(S):	EP-05	
DESCRIBE IN DETAILTHE EMISSION SOURCE Natural gas fired emergency generator used to				e primary sou	rce of power t	o the facility is	s unavailable	3.
TYPE OF EMISSION SOU	RCE (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking	(Form B4)			t. of chemical	s/coatings/ink	s (Form B7)	
☑ Int.combustion engine/generator (Form B2) ☐ Liquid storage tanks (Form B3)	☐ Coating/finish☐ Storage silos		rm B5)	☐ Incinerat	tion (Form B8) orm B9))		
START CONSTRUCTION DAT April 20	7 OPERATION DAT	TE: No	vember 2018	DATE MANU	FACTURED:		2016 or Lat	er
MANUFACTURER / MODEL NO.:	Generac SG100			OP. SCHEDL	LE: 100 HR/Y	'R		
IS THIS SOURCE SUBJECT TO? NSPS (SUBI	PART?): Yes, JJJJ	NESHAP (SUB	PART?): No	MACT (SI	JBPART?): Y	es, <u>ZZZZ</u>		
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB 25 N	IAR-MAY 25	JUN-AUG	25 SEP-I	VOV 25			
EXPECTED ANNUAL HOURS OF OPERATION		VISIBLE STAC					<20	% OPACITY
CRITERIA /	AIR POLLUTANT	FEMISSIONS	S INFORM.	ATION FOR	THIS SO	URCE	8-8116-87/I	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	<u></u>	Mfg/AP-42	1					
PARTICULATE MATTER<2.5 MICRONS (PM25)		Mfg/AP-42	1					
SULFUR DIOXIDE (SO2)		AP-42	1					
NITROGEN OXIDES (NOx)		Mfg	See F	orm B, Page	1, for criteria	pollutant to	tals for this	source
CARBON MONOXIDE (CO)		Mfg						
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg						
LEAD								
OTHER		 						
HAZARDOUS	AIR POLLUTAI	NT EMISSIO	NS INFORI	MATION FO	OR THIS S	OURCE	0.800	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	TROLS / LIMITS)	1	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Acetaldehyde	75-07-0	AP-42	0.003	1.47E-04	0.003	1.47E-04	0.003	1.47E-04
Acrolein	107-02-8	AP-42	0.003	1.47E-04	0.003	1.47E-04	0.003	1.47E-04
Benzene	71-43-2	AP-42	7.35E-04	3.67E-05	7.35E-04	3.67E-05	7.35E-04	3.67E-05
Biphenyl	92-52-4	AP-42	1.50E-06	7.48E-08	1.50E-06	7.48E-08	1.50E-06	7.48E-08
Carbon Tetrachloride	56-23-5	AP-42	2.30E-05	1.15E-06	2.30E-05	1.15E-06	2.30E-05	1.15E-06
Chlorobenzene	108-90-7	AP-42	1.68E-05	8.41E-07	1.68E-05	8.41E-07	1.68E-05	8.41E-07
Chloroform	67-66-3	AP-42	1.78E-05	8.92E-07	1.78E-05	8.92E-07	1.78E-05	8.92E-07
Ethylbenzene	100-41-4	AP-42	4.09E-05	2.05E-06	4.09E-05	2.05E-06	4.09E-05	2.05E-06
TOXIC AIF	R POLLUTANT E						200	
INDICA	TE EXPECTED AC	TUAL EMISSION	NS AFTER CO	ONTROLS / L	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE		/hr		day		b/yr
Chlorobenzene	108-90-7	AP-42		E-05		E-04		.002
Chloroform	67-66-3	AP-42		E-05		E-04		.002
Ethylene Dibromide	106-93-4	AP-42		E-04		108		.003
Formaldehyde	50-00-0	AP-42		021		502		.003
Hexane (or n-Hexane)	110-54-3	AP-42		E-04				.017
Methylene Chloride	75-09-2	AP-42		E-05	0.004			.006
Phenol	108-95-2	AP-42		E-05		E-04		.002
Attachments: (1) emissions calculations and supporting								
describe how these are monitored and with what freque	ncy; and (3) describe a	ny monitoring devi	ces, gauges, or	r test ports for th	permit millits (e.) ils source.	y. Hours of oper	aduli, emissio	iiiales) and

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE
Attach Additional Sheets As Necessary

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDI	ENR/Division of Air	Quality - Applic	pplication for Air Permit to Construct/Operate					
EMISSION SOURCE DESCRIPTION:				EMISSION S	SOURCE ID N			
Generac SG100 Emergency Generator				CONTROL	DEVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION F	POINT (STACI	K) ID NO(S):	EP-05	
DESCRIBE IN DETAILTHE EMISSION SOURCE Natural gas fired emergency generator used to				e primary sou	rce of power t	o the facility is	s unavailabl	e.
TYPE OF EMISSION SOU	RCE (CHECK AND C	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
Coal,wood,oil, gas, other burner (Form B1)	Woodworking					s/coatings/ink)
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finishing/printing (Form B5) ☐ Incineration (Form B8) ☐ Liquid storage tanks (Form B3) ☐ Storage silos/bins (Form B6) ☐ Other (Form B9)								
START CONSTRUCTION DAT April 20	17 OPERATION DAT	TE: No	vember 2018	DATE MANU	JFACTURED:		2016 or La	iter
MANUFACTURER / MODEL NO.:	Generac SG100		EXPECTED	OP. SCHEDU	LE: 100 HR/Y	′R		
IS THIS SOURCE SUBJECT TO? NSPS (SUBI	PART?): Yes, JJJJ	NESHAP (SUB	PART?): No	MACT (SI	UBPART?): Y	es, <u>ZZZZ</u>		
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB 25 M	IAR-MAY 25	JUN-AUG	25 SEP-I	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION		VISIBLE STAC					<20	% OPACITY
CRITERIA A	AIR POLLUTANT	EMISSIONS	S INFORM	ATION FOR	R THIS SOL	JRCE		
	, , ,	SOURCE OF	EXPECTE	D ACTUAL	0.00	POTENTIAL	. EMSSION	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	VTROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		Mfg/AP-42						
PARTICULATE MATTER<10 MICRONS (PM10)		Mfg/AP-42]					
PARTICULATE MATTER<2 5 MICRONS (PM25)		Mfg/AP-42]					
SULFUR DIOXIDE (SO2)		AP-42	1					
NITROGEN OXIDES (NOx)		Mfg	See F	orm B, Page	1, for criteria	pollutant to	als for this	source
CARBON MONOXIDE (CO)		Mfg	1					
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg	1					
LEAD			1					
OTHER								
HAZARDOUS	AIR POLLUTAI	NT EMISSIO	VS INFORI	NATION FO	OR THIS S	OURCE	San The	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Ethylene Dibromide	106-93-4	AP-42	2.78E-05	1.39E-06	2.78E-05	1.39E-06	2.78E-05	1.39E-06
Formaldehyde	50-00-0	AP-42	0.021	0.001	0.021	0.001	0.021	0.001
Hexane (or n-Hexane)	110-54-3	AP-42	1.69E-04	8.43E-06	1.69E-04	8.43E-06	1.69E-04	8.43E-06
Methanol	67-56-1	AP-42	9.40E-04	4.70E-05	9.40E-04	4.70E-05	9.40E-04	4.70E-05
Methylene Chloride	75-09-2	AP-42	5.57E-05	2.78E-06	5.57E-05	2.78E-06	5.57E-05	2.78E-06
Naphthalene	91-20-3	AP-42	3.65E-05	1.82E-06	3.65E-05	1.82E-06	3.65E-05	1.82E-06
PAH		AP-42	5.08E-05	2.54E-06	5.08E-05	2.54E-06	5.08E-05	2.54E-06
Phenol	108-95-2	AP-42	1.59E-05	7.97E-07	1.59E-05	7.97E-07	1.59E-05	7.97E-07
TOXIC AIR	R POLLUTANT E	MISSIONS I	NFORMAT	ION FOR T	THIS SOUR		THE STATE OF	
INDICA	ATE EXPECTED ACT	TUAL EMISSION	NS AFTER CO	ONTROLS / LI	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/	day	1	lb/yr
Styrene	100-42-5	AP-42		E-05		E-04	-	0.002
Toluene	108-88-3	AP-42		E-04	 	009		0.036
Vinyl Chloride	75-01-4	AP-42		E-06		E-04		36E-04
Xylene	1330-20-7	AP-42		E-04		002	$\overline{}$	0.010
					5.0		<u>_</u>	
Attachments: (1) emissions calculations and supporting	documentation (2) indi	cate all requested	state and fede	ral enforceable	nermit limits /a	n hours of one	ation emissis	on rates) and
describe how these are monitored and with what freque	ncy, and (3) describe a	ny monitoring devi	ces, gauges, or	test ports for th	nis source.	a or oper	and official	racas, and

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE
Attach Additional Sheets As Necessary

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCC	ENR/Division of Air (Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ate		В			
EMISSION SOURCE DESCRIPTION:				EMISSION S	OURCE ID N	O:	EG-02				
Generac SG100 Emergency Generato	r			CONTROL D	EVICE ID NO)(S):	NA				
OPERATING SCENARIO 1 of 1		-		EMISSION POINT (STACK) ID NO(S): EP-05							
DESCRIBE IN DETAILTHE EMISSION SOUR	CE PROCESS (ATTA	CH FLOW DIAG	SRAM):			, (- ,					
Natural gas fired emergency generator used to	•		•	e primary sou	rce of power t	o the facility is	s unavailable	₽.			
TYPE OF EMISSION SOL	JRCE (CHECK AND C	OMPLETE API	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):				
☐ Coal,wood,oil, gas, other burner (Form B1)		(Form B4)		Manufac	t. of chemical	s/coatings/ink	s (Form B7))			
Int.combustion engine/generator (Form B2)	Coating/finish	ing/printing (Fo	rm B5)	☐ Incinerat	ion (Form B8))					
Liquid storage tanks (Form B3) Storage silos/bins (Form B6) Other (Form B9)											
START CONSTRUCTION DAT April 20	017 OPERATION DAT	E: No	vember 2018	DATE MANU	FACTURED:		2016 or La	ter			
MANUFACTURER / MODEL NO.:	Generac SG100		EXPECTED	OP. SCHEDU	LE: 100 HR/Y	'R					
IS THIS SOURCE SUBJECT TO? NSPS (SUE	PART?): Yes, JJJJ	NESHAP (SUB	PART?): No	MACT (SI	JBPART?): Yo	es, <u>ZZZZ</u>					
PERCENTAGE ANNUAL THROUGHPUT (%):	DEC-FEB 25 M	AR-MAY 25	JUN-AUG	25 SEP-1	NOV 25						
EXPECTED ANNUAL HOURS OF OPERATION		VISIBLE STAC					<20	% OPACITY			
CRITERIA	AIR POLLUTANT	EMISSIONS	SINFORMA	ATION FOR	THIS SOL	JRCE					
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)			
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
PARTICULATE MATTER (PM)		Mfg/AP-42									
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		Mfg/AP-42									
PARTICULATE MATTER<2.5 MICRONS (PM2.5)		Mfg/AP-42]								
SULFUR DIOXIDE (SO2)		AP-42	42								
NITROGEN OXIDES (NOx)		Mfg	See Form B, Page 1, for criteria pollutant totals for this source								
CARBON MONOXIDE (CO)		Mfg									
VOLATILE ORGANIC COMPOUNDS (VOC)		Mfg									
LEAD											
OTHER											
HAZARDOU	S AIR POLLUTAN	T EMISSIO	NS INFORI	VIATION FO	OR THIS SO	DURCE					
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3			
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	TROLS / LIMITS)			
HAZARDOUS AIR POLLUTANT AND CAS NO		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr			
Styrene	100-42-5	AP-42	2.08E-05	1.04E-06	2.08E-05	1.04E-06	2.08E-05	1.04E-06			
Toluene	108-88-3	AP-42	3.65E-04	1.82E-05	3.65E-04	1.82E-05	3.65E-04	1.82E-05			
Vinyl Chloride	75-01-4	AP-42	9.36E-06	4.68E-07	9.36E-06	4.68E-07	9.36E-06	4.68E-07			
Xylene	1330-20-7	AP-42	1.02E-04	5.08E-06	1.02E-04	5.08E-06	1.02E-04	5.08E-06			
		<u> </u>									
70//04											
	R POLLUTANT E					RCE					
	ATE EXPECTED ACT	TUAL EMISSION	NS AFTER CO	ONTROLS / LI	MITATIONS						
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/	day	1	lb/yr			
		ĺ									
			See Form	n B, Pages 1-	3, for TAP to	tals for this	source				
Attachments: (1) emissions calculations and supporting	g documentation; (2) indi	cate all requested	state and fede	ral enforceable	permit limits (e.	g. hours of ope	ration, emission	n rates) and			
describe how these are monitored and with what frequ	ency; and (3) describe ar	ny monitoring dev	ices, gauges, or	r test ports for th	is source						

EMISSION SOURCE (INTERNAL COMBUSTION ENGINES/GENERATORS)

REVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate									
EMISSION SOURCE DESCRIPTION	Generac SG100 Emergency Ger	EMISSION SOURCE ID NO:	EG-02						
			CONTROL DEVICE ID NO(S):	NA					
OPERATING SCENARIO 1 of 1			EMISSION POINT (STACK) ID NO(S	S): EP-05					
CHECK ALL THAT APPLY ☐ EMERGENCY ☐ SPACE HEAT ☐ ELECTRICAL GENERATION ☐ PEAK SHAVER ☐ OTHER (DESCRIBE):									
GENERATOR OUTPUT (KW): 100 ANTICIPATED ACTUAL HOURS OF OPERATION AS PEAK SHAVER (HRS/YR): N/A									
ENGINE OUTPUT (HP): 148.9									
TYPE ICE: GASOLINE ENGINE OTHER (DESCRIBE)	DIESEL ENGINE UP NG SI ICE emergency generator		ENGINE GREATER THAN 600 HP (complete below)	☐ DUAL FUEL ENGINE					
ENGINE TYPE RICH BURN LEAN BURN									
EMISSION REDUCTION MODIFICATIONS INJECTION TIMING RETARD PREIGNITION CHAMBER COMBUSTION OTHER Air/fuel ratio									
OR STATIONARY GAS TUR	BINE (complete below)	NATURAL GAS PIPELINE (COMPRESSOR OR TURBINE (comple	ate below)					
FUEL NATURAL GAS OIL									
	TEAM INJECTION CLEAN LEAN-PREMIX	BURN AND PRECOMBUSTION	ON CHAMBER UNCONT	ROLLED [_]					
2 SNCONTROLLED []		(INCLUDE STARTUP/BA	ACKIID EIIEI /						
	I OLL GOAGE	MAXIMUM DESIGN							
FUEL TYPE	UNITS	CAPACITY (UNIT/HR	REQUESTED CAPACITY LIMITATION (UNIT/HR)						
Natural Gas	cf/hr	1116.0	!	N/A					
				,,,					
	FUEL OULD LOTEDIOTIC								
CONTRACTOR OF THE PROPERTY OF THE PER	FUEL CHARACTERISTIC	S (COMPLETE ALL TH	IAT ARE APPLICABLE)						
FUEL TYPE	BTU/UNIT	UNITS		R CONTENT WEIGHT)					
Natural Gas	1,020	scf	0.0	0005					
	MANUFACTURER'S SP	ECIFIC EMISSION FACT	TORS (IF AVAILABLE)						
POLLUTANT	NOX	CO PM	PM10 VC	OC OTHER					
EMISSION FACTOR g/hp-hr	0.003	0.06 NA	NA 0.	17					
UNIT	g/hp-hr g	/hp-hr	g/K\	N-hr					
DESCRIBE METHODS TO MINIM	IZE VISIBLE EMISSIONS DUI	RING IDLING, OR LOW LO	OAD OPERATIONS:						
COMMENTS:									

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 12/01/01 NCDE	ENR/Division of Air C	Quality - Applica	tion for Air P	ermit to Con	struct/Operat	е		 B	
MISSION SOURCE DESCRIPTION:				EMISSION S	ON SOURCE ID NO: WH-01				
Hurst LPW-G-125-60W Hot Water Boiler				CONTROL D	EVICE ID NO	(S):	NA		
OPERATING SCENARIO 1 of 1				EMISSION F	OINT (STACE	() ID NO(S):	EP-06		
DESCRIBE IN DETAILTHE EMISSION SOURCE	PROCESS (ATTACH	FLOW DIAGRA	M):						
Natural gas fired hot water boiler used to provide b	uilding heat								
TYPE OF EMISSION SOUR	RCE (CHECK AND C	OMPLETE APP	ROPRIATE FO	ORM B1-B9 C	N THE FOLL	OWING PAGE	ES):		
☑ Coal,wood,oil, gas, other burner (Form B1)		(Form B4)		Manufac	t. of chemicals	coatings/inks	(Form B7)		
☐ Int.combustion engine/generator (Form B2)	Coating/finish	ing/printing (Forr	m B5)	Incinerat	ion (Form B8)				
☐ Liquid storage tanks (Form B3) ☐ Storage silos/bins (Form B6) ☐ Other (Form B9)									
START CONSTRUCTION DATE: April 20	17 OPERATION DAT	E: No	ovember 2018	DATE MANL	FACTURED:		2016 or La	ter	
MANUFACTURER / MODEL NO.:	Hurst LPW-G-125			OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	< 52 WK/YF	2	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPA		(SUBPART?): N	lo MACT	(SUBPART?):	No				
PERCENTAGE ANNUAL THROUGHPUT (%): DE	C-FEB 25 MAR	-MAY 25 J	UN-AUG 25	SEP-NOV	25				
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC					<20	% OPACITY	
CRITERIA A	IR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE	Here we will have		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSION	S	
]		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CO	NTROLS / LIMITS)	
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
PARTICULATE MATTER (PM)		AP-42	0.039	0.171	0.039	0.171	0.039	0.171	
PARTICULATE MATTER<10 MICRONS (PM ₁₀)		AP-42	0.039	0.171	0.039	0.171	0.039	0.171	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})		AP-42	0.039	0.171	0.039	0.171	0.039	0.171	
SULFUR DIOXIDE (SO2)		AP-42	0.003	0.014	0.003	0.014	0.003	0.014	
NITROGEN OXIDES (NOx)		AP-42	0.257	1.13	0.257	1.13	0.257	1.13	
	ARBON MONOXIDE (CO)			1.89	0.432	1.89	0.432	1.89	
	OLATILE ORGANIC COMPOUNDS (VOC)			0.124	0.028	0.124	0.028	0.124	
LEAD							ļ		
OTHER									
HAZARDOUS	AIR POLLUTAN	TEMISSION	S INFORM	ATION FO	R THIS SO	URCE		TUBE DEX	
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	ENTIAL EMSSIONS		
		EMISSION	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMI		
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr	
Benzene	71-43-2	AP-42	1.08E-05	4.73E-05	1.08E-05	4.73E-05	1.08E-05	4.73E-05	
Dichlorobenzene	106-46-7	AP-42	6.18E-06	2.71E-05	6.18E-06	2.71E-05	6.18E-06	2.71E-05	
Formaldehyde	50-00-0	AP-42	3.86E-04	0.002	3.86E-04	0.002	3.86E-04	0.002	
Hexane (or n-Hexane)	110-54-3	AP-42	0.009	0.041	0.009	0.041	0.009	0.041	
Naphthalene	91-20-3	AP-42	3.14E-06	1.38E-05	3.14E-06	1.38E-05	3.14E-06	1.38E-05	
Toluene	108-88-3	AP-42	1.75E-05	7.67E-05	1.75E-05	7.67E-05	1.75E-05	7.67E-05	
Arsenic Compounds		AP-42	1.03E-06	4.51E-06	1.03E-06	4.51E-06	1.03E-06	4.51E-06	
Beryllium	7440-41-7	AP-42	6.18E-08	2.71E-07	6.18E-08	2.71E-07	6.18E-08	2.71E-07	
	POLLUTANT EI					CE	1000		
	TE EXPECTED ACT				ITATIONS				
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE		/hr		day		lb/yr	
Benzene	71-43-2	AP-42		E-05		E-04).095	
Dichlorobenzene	106-46-7	AP-42		E-06		E-04	(0.054	
Formaldehyde	50-00-0	AP-42		E-04		009		3.38	
Hexane (or n-Hexane)	110-54-3	AP-42		009		222		81.2	
Toluene	108-88-3	AP-42		E-05		E-04).153	
Arsenic Compounds		AP-42		E-06		E-05	h	0.009	
Beryllium	7440-41-7	AP-42		E-08		E-06		11E-04	
admium	7440-43-9	AP-42	5.66	E-06	1.36	E-04	0	.050	

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDE	NR/Division of Air	Quality - Appli	cation for Air	r Permit to Co	nstruct/Oper	ate		В
EMISSION SOURCE DESCRIPTION:			EMISSION SOURCE ID NO: WH-01					
Hurst LPW-G-125-60W Hot Water Boiler				CONTROL D	EVICE ID NO	(S):	NA	
OPERATING SCENARIO 1 of 1				EMISSION P	OINT (STACK	() ID NO(S):	EP-06	
DESCRIBE IN DETAILTHE EMISSION SOURCE IN Natural gas fired hot water boiler used to provide be		CH FLOW DIAG	RAM):					
TYPE OF EMISSION SOUR	CE (CHECK AND	COMPLETE AP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
☑ Coal,wood,oil, gas, other burner (Form B1)	☐ Woodworking					s/coatings/inks	•	
☐ Int.combustion engine/generator (Form B2)	☐ Coating/finish	ing/printing (Fon	m B5)		ion (Form B8)	-	, ,	
Liquid storage tanks (Form B3)	Storage silos/	bins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DAT April 2017	OPERATION DAT	E: No	vember 2018	DATE MANU	FACTURED:		2016 or Late	r
MANUFACTURER / MODEL NO.:	Hurst LPW-G-125	-60W	EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPAR	RT?): No NESHA	P (SUBPART?)	: No MA	CT (SUBPART	?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DE	C-FEB 25 M	AR-MAY 25	JUN-AUG	25 SEP-N	OV 25			
EXPECTED ANNUAL HOURS OF OPERATION:	8,760	VISIBLE STAC					<20	% OPACITY
CRITERIA AI	R POLLUTAN	T EMISSION	S INFORM	ATION FO	R THIS SO	URCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	L EMSSIONS	
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CONT	ROLS / LIMITS)	(AFTER CONT	TROLS / LIMITS)
AIR POLLUTANT EMITTED		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)		AP-42				<u> </u>		
PARTICULATE MATTER<10 MICRONS (PM10)		AP-42	1					
PARTICULATE MATTER<2.5 MICRONS (PM25)		AP-42	1					
SULFUR DIOXIDE (SO2)		AP-42						
NITROGEN OXIDES (NOx)		AP-42	See i	Form B, Page	1, for criteria	a pollutant to	tals for this s	source
CARBON MONOXIDE (CO)		AP-42				•		
VOLATILE ORGANIC COMPOUNDS (VOC)		AP-42						
LEAD								
OTHER								
HAZARDOUS	AIR POLLUTA	NT EMISSIO	NS INFOR	MATION F	OR THIS S	OURCE		Secretary (ca)
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	. EMSSIONS	
1		EMISSION	1				1	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Cadmium	7440-43-9	AP-42	5.66E-06	2.48E-05	5.66E-06	2.48E-05	5.66E-06	2.48E-05
Chromium Compounds		AP-42	7.21E-06	3.16E-05	7.21E-06	3.16E-05	7.21E-06	3.16E-05
Cobalt	7440-48-4	AP-42	4.32E-07	1.89E-06	4.32E-07	1.89E-06	4.32E-07	1.89E-06
Manganese Compounds		AP-42	1.96E-06	8.57E-06	1.96E-06	8.57E-06	1.96E-06	8.57E-06
Mercury	7439-97-6	AP-42	1.34E-06	5.86E-06	1.34E-06	5.86E-06	1.34E-06	5.86E-06
Nickel	7440-02-0	AP-42	1.08E-05	4.73E-05	1.08E-05	4.73E-05	1.08E-05	4.73E-05
Selenium	7782-49-2	AP-42	1.24E-07	5.41E-07	1.24E-07	5.41E-07	1.24E-07	5.41E-07
TOXIC AIR	POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
INDICAT	E EXPECTED AC	TUAL EMISSIO	NS AFTER C	ONTROLS / L	IMITATIONS			· · · · · · · · · · · · · · · · · · ·
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb	/hr	lb/d	day	lk	o/yr
Chromium Compounds		AP-42	7.21	E-06	1.73	E-04		063
Manganese Compounds		AP-42	1.96	E-06	4.69	E-05		017
Mercury	7439-97-6	AP-42		E-06		E-05		012
Nickel	7440-02-0	AP-42		E-05		E-04		095
								_
Attachments: (1) emissions calculations and supporting doc how these are monitored and with what frequency; and (3) of					mit limits (e.g. h	ours of operation	n, emission rate	s) and describe

COMPLETE THIS FORM AND COMPLETE AND ATTACH APPROPRIATE B1 THROUGH B9 FORM FOR EACH SOURCE
Attach Additional Sheets As Necessary

EMISSION SOURCE (WOOD, COAL, OIL, GAS, OTHER FUEL-FIRED BURNER)

							B1			
EMISSION S	OURCE DESCRIP	TION: H	Hurst LPW-G-125-6	30W Hot Wate	r Boiler	EMISS	SION SOURCE IE	O NO: \	WH-01	
						CONT	ROL DEVICE ID	NO(S)	: NA	
OPERATING	SCENARIO:		1_ OF_	1		EMISS	SION POINT (STA	ACK) II	O NO(S): EP-06	
DESCRIBE L	ISE: PROC	CESS H	EAT X	SPACE HEAT	Т		ELECTRICAL O	SENER	ATION	
	CONT	TINUOU	S USE	STAND BY/E	MERGENCY		OTHER (DESC	RIBE):		
HEATING ME	CHANISM:	X	INDIRECT		DIRECT					
MAX. FIRING	RATE (MMBTU/H	IOUR):	5.25							
				WOOD-	FIRED BU	RNE	3	PALE		
WOOD TY	PE: BAR	<	WOOD/BARK	WET W	OOD	D	RY WOOD		OTHER (DESCRIB	E);
PERCENT M	OISTURE OF FUE	iL:								
	UNCONTROLLE	o	CONTROLL	ED WITH FLY	ASH REINJE	CTION		CONT	ROLLED W/O REIN.	JECTION
FUEL FEED I	METHOD:			EAT TRANSF	FER MEDIA:		STEAM AIF	٦ (OTHER (DESCRIBE)	
				COAL-F	FIRED BUI	RNEF				
TYPE OF BO	ILER _		IF OTHER DESC	RIBE:						
PULVERIZED	OVERFEED ST	OKER	UNDERFEED	STOKER	SPRE	ADER	STOKER	F	LUIDIZED BED	
☐ WET BED	UNCONTRO	OLLED	UNCONTRO	LLED	UNCC	ONTRO	LLED		CIRCULATING	
☐ DRY BED	CONTROLL	.ED	CONTROLL	ED	FLYAS	SH RE	INJECTION		RECIRCULATING	
					NO FL	YASH	REINJECTION			
				OIL/GAS	-FIRED BL	JRNE	R			
TYPE OF BO	ILER:	UTILIT	Y INDU	STRIAL	x COMN	/IERCI/	AL	INSTI	TUTIONAL	
TYPE OF FIR	ING:	NORM		SENTIAL			URNERS	NO LO	OW NOX BURNER	
				OTHER FU	EL-FIRED	BUR	NER			
TYPE(S) OF I	FUEL:									
TYPE OF BOI	LER:	UTILIT	Y INDU	JSTRIAL COMMERCIAL INSTITUTIONAL						
TYPE OF FIR	ING:			CONTROL(S)						
& Strong or			FUEL USAG	E (INCLUD			ACKUP FUEL	_S)		
E. 1.	- TVDF		10070	1	MAXIMUM				REQUESTED CA	
FUE	EL TYPE	 	UNITS		CAPACITY (UNIT/H	IR)		LIMITATION (UN	NIT/HR)
Nat	ural Gas	├─	scf		5,14	7			5,147	
		├─								
	E		CUADACTEDI	STICE (COI	POLETE A	11 T		21.10	4	
A E III		UEL	CHARACTERIS			LLL I				
	FUEL TY	DE			PECIFIC CONTENT		SULFUR CON		ASH CON	
							(% BY WEIG	HI)	(% BY Wi	EIGHT)
	Natural G	as		10	020/scf		0.0005		0	 -
COMMENTO.					-					
COMMENTS:										

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 12/01/01 NCDENR/Division of Air	r Quality - Appl	ication for Ai	r Permit to C	onstruct/Ope	erate		В
MISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID N	10:	TK-1	
TK-1 Pipeline Liquids Storage Tank	CONTROL DEVICE ID NO(S): NA						
OPERATING SCENARIO 1 of 1			EMISSION F	OINT (STACI	K) ID NO(S):	NA	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTAITK-1 will have a capacity of 1,000 gallons and will receive liquids from			s filter.				
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE A	PPROPRIATE	FORM B1-B	ON THE FO	LLOWING PA	(GES):	· · · · ·
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking	(Form B4)		Manufac	t. of chemical	s/coatings/ink	s (Form B7)	
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finish	ing/printing (For	m B5)	Incinerat	ion (Form B8))		
☐ Liquid storage tanks (Form B3) ☐ Storage silos/	bins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DAT April 2017 OPERATION DAT	E: No	vember 2018	DATE MANU	FACTURED:		2016 or Later	
MANUFACTURER / MODEL NO.: NA		EXPECTED	OP. SCHEDU	LE: 24 HR/D/	AY 7 DAY/WI	C 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No NESHA	AP (SUBPART?): No MA	CT (SUBPAR	T?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 M	AR-MAY 25	JUN-AUG	25 SEP-	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 8,760	VISIBLE STAC						% OPACITY
CRITERIA AIR POLLUTAN	T EMISSION	IS INFORM	IATION FO	R THIS SC	URCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	-	-	-	-	-	-	-
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	-	-	-	-	-	-
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	-	-	-	-	-	-	-
SULFUR DIOXIDE (SO2)	-	-	-	-	-	-	-
NITROGEN OXIDES (NOx)	-	-	-	-	-	-	-
ARBON MONOXIDE (CO)	-	-	-	-	-	-	-
OLATILE ORGANIC COMPOUNDS (VOC)	Mass balance	0.033	0.145	0.033	0.145	0.033	0.145
LEAD							
OTHER						***************************************	
HAZARDOUS AIR POLLUTA	NT EMISSIC	NS INFOR	MATION F	OR THIS S	OURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)				ROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
NA							
-					-		
			-			· · · · · ·	
			<u>.</u>				
TOXIC AIR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
INDICATE EXPECTED AC							
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lh.	/hr	lh/	day	Ih	/yr
NA	E. GOGREE			107	day	12.	,, yı
				4.0.0.4			

EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 12/01/01 NC	DENR/Division of Air Quality	y - Application for Air	Permit to Construct/Operate	B3
EMISSION SOURCE DESCRIPTION:	Pipeline Liquids Sto	orage Tank EMI	ISSION SOURCE ID NO: TK-1	
		col	NTROL DEVICE ID NO(S): NA	
OPERATING SCENARIO 1 of 1		EMI	ISSION POINT (STACK) ID NO(S): NA	
	EAC	CH STORAGE TAI	VK .	
DESCRIBE IN DETAIL THE STORAGE TAN TK-1 will have a capacity of 1,000 gallons an	IK (ATTACH FLOW DIAGRA) Id will receive liquids from the	M): e compressor engine flu	ilds filter.	
LIQUID STORED: Liquids from compl	ressor engine fluids filter	LIQUID MOLECULAR	R WEIGHT (LB/LB-MOLE): TBD	PAN PA
TANK CAPACITY (GAL): 1,000		VAPOR MOLECULAR	R WEIGHT (LB/LB-MOLE): TBD	
AVERAGE LIQUID SURFACE TEMPERATL	JRE (F): 77	VAPOR PRESSURE	AT AVE. LIQUID SURFACE TEMP (PSIA): 7.70 (F	Reid)
MIN. LIQUID SURFACE TEMP (F): 44	MAX. LIQUID SURFACE TO		MAX. TRUE VAPOR PRESS. (PSIA): 7.70 (F	
BULK LIQUID TEMPERATURE (F):	BREATHER VENT SETTIN	IGS (PSIG) VACI	UUM PRESSURE	
SHELL DIAMETER (FT): 4.12	SHELL CONDITION: X C	GOOD POOR	IS TANK HEATED: YES X NO	
SHELL COLOR: Grey/Light	MAXIMUM THROUGHPUT	(GAL/YR): 5.0	000 MAXIMUM TURNOVERS PER YEAR: 5.00	
WORKING VOLUME (GAL): 1,000	ACTUAL THROUGHPUT (C	· · · · · · · · · · · · · · · · · · ·	000 ACTUAL TURNOVERS PER YEAR: 5.00	
MAX. FILLS PER DAY: TBD	MAX. FILLING RATE (GAL/		BD MIN. DURATION OF FILL (HR/FILL): TBD	
		AL FIXED ROOF 1		
SHELL HEIGHT (FT): 10		: X CONE OR	DOME ROOF HEIGHT (FT): 4.12	
AVERAGE LIQUID HEIGHT (FT): 5		DITION: X GOOD		
MAXIMUM LIQUID HEIGHT (FT): 10	ROOF COLO		<u> </u>	
NA OCINIONI ELECTIONI (11).		OR: Grey RIZONTAL TANK	•	
SHELL LENGTH (FT): NA				
SHEEL LENGTH (FT). NA		DERGROUND ?:	YES X NO	
DESCRIBE PERTINENT TANK DATA SUCH				
NA				
DESCRIBE ANY MONITORING OR WARNIN	NG DEVICES (SUCH AS LEA	AK AND FUME DETEC	TION INSTRUMENTATION):	
NA				
			*	
COMMENTS:				

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

EVISED 12/01/01 NCDENR/Division of Air	Quality - Appl	ication for Ai	r Permit to C	onstruct/Ope	rate		В
MISSION SOURCE DESCRIPTION:			EMISSION S	OURCE ID N	0:	TK-2	
TK-2 Hydrocarbon Waste Tank			CONTROL DEVICE ID NO(S): NA				
OPERATING SCENARIO 1 of 1			EMISSION F	OINT (STACE	() ID NO(S):	NA	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTAITK-2 will have a capacity of 2,500 gallons and will store waste oil.	CH FLOW DIAG	GRAM):					
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE AF	PROPRIATE	FORM B1-B	ON THE FO	LLOWING PA	AGES):	
Coal,wood,oil, gas, other burner (Form B1) Woodworking	(Form B4)			t. of chemical	s/coatings/ink	s (Form B7)	
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finish	ing/printing (For	m B5)	☐ Incinerat	ion (Form B8)	1		
☐ Liquid storage tanks (Form B3) ☐ Storage silos/	bins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DAT April 2017 OPERATION DAT	E: No	vember 2018	DATE MANU	FACTURED:		2016 or Later	
MANUFACTURER / MODEL NO.: NA		EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/WI	K 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No NESHA	AP (SUBPART?): No MA	CT (SUBPAR	T?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 M.	AR-MAY 25	JUN-AUG	25 SEP-I	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 8,760	VISIBLE STAC	K EMISSION	S UNDER NO	RMAL OPER	ATION:		% OPACITY
CRITERIA AIR POLLUTAN	T EMISSION	IS INFORM	ATION FO	R THIS SC	URCE	The Surge	MU 5 8 8
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CONT	ROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	-	_	-	-	-	-	-
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	-	-	-	-	-	-
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	-	-	-	-	-	-	-
SULFUR DIOXIDE (\$02)	-	-	-	-	-	-	-
NITROGEN OXIDES (NOx)	-	-	-	-	-	-	-
RBON MONOXIDE (CO)	-	-	-	-	-	-	-
OLATILE ORGANIC COMPOUNDS (VOC)	Mass balance	5.01E-06	2.19E-05	5.01E-06	2.19E-05	5.01E-06	2.19E-05
LEAD							
OTHER							
HAZARDOUS AIR POLLUTA	NT EMISSIC	NS INFOR	MATION F	OR THIS S	OURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIA	L EMSSIONS	
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	(AFTER CONT	ROLS / LIMITS)	
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
NA							
							Ì
TOXIC AIR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
INDICATE EXPECTED AC							TT-2-12
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lh	/hr	lb/	day	lt-	o/yr
NA	LI COCKOL			101	<u></u>		<i>"</i> "
<u></u>							
			·	-	· : ···		
							

EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 12/01/01 No	CDENR/Division of Air Quality	y - Application for Air Pe	rmit to Construct/Operate		B3
EMISSION SOURCE DESCRIPTION:	Hydrocarbon Was	ste Tank EMISS	ION SOURCE ID NO: TK-2		
			ROL DEVICE ID NO(S): NA		
OPERATING SCENARIO 1 of 1 EMISSION POINT (STACK) ID NO(S): NA					
		H STORAGE TANK			
DESCRIBE IN DETAIL THE STORAGE TA TK-2 will have a capacity of 1,000 gallons a		M):			
LIQUID STORED: Waste Oil		LIQUID MOLECULAR W	/EIGHT (LB/LB-MOLE): TBD		
TANK CAPACITY (GAL): 2,500		VAPOR MOLECULAR V	VEIGHT (LB/LB-MOLE): TBD		
AVERAGE LIQUID SURFACE TEMPERAT	URE (F): 77	VAPOR PRESSURE AT	AVE. LIQUID SURFACE TEMP (PSIA):	0.0001	
MIN. LIQUID SURFACE TEMP (F): 44	MAX. LIQUID SURFACE TE	EMP (F): 80	MAX. TRUE VAPOR PRESS. (PSIA):	0.0001	
BULK LIQUID TEMPERATURE (F):	BREATHER VENT SETTIN	GS (PSIG) VACUUI	·		ngs
SHELL DIAMETER (FT): 4.6	SHELL CONDITION: X C	GOOD POOR	IS TANK HEATED:YES X N		
SHELL COLOR: Grey/Light	MAXIMUM THROUGHPUT		MAXIMUM TURNOVERS PER YEAR	: 5.00	
WORKING VOLUME (GAL): 2,500	ACTUAL THROUGHPUT (C		ACTUAL TURNOVERS PER YEAR:	5.00	
MAX. FILLS PER DAY: TBD	MAX. FILLING RATE (GAL/			TBD	10.1-0.0
		AL FIXED ROOF TA			
SHELL HEIGHT (FT): 20		: X CONE OR	DOME ROOF HEIGHT (FT):	4.6	
AVERAGE LIQUID HEIGHT (FT): 10	ROOF CON			4.0	- .
MAXIMUM LIQUID HEIGHT (FT): 20	ROOF COLO		FOOR		
WANTERCOLD FILEIGHT (11). 20		OR: Grey RIZONTAL TANKS			
SHELL LENGTH (ET): NA			TO W NO		
SHELL LENGTH (FT): NA		DERGROUND ?: YE			
DESCRIBE PERTINENT TANK DATA SUC		the same of the sa			
DESCRIBE ANY MONITORING OR WARN	ING DEVICES (SUCH AS LEA	AK AND FUME DETECTION	ON INSTRUMENTATION):		
NA					
COMMENTS:			A111		
1					
1					
Į.					
1					
N .					
1					

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

VISED 12/01/01 NCDENR/Division of Air	r Quality - Appl	ication for A	ir Permit to C	onstruct/Ope	erate		l B
MISSION SOURCE DESCRIPTION:	EMISSION SOURCE ID NO: TK-3						
TK-3 Ammonia Tank			CONTROL D	EVICE ID NO)(S):	NA	
OPERATING SCENARIO 1 of 1		EMISSION F	OINT (STAC	K) ID NO(S):	NA		
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTA TK-3 will have a capacity of 13,400 gallons and will store aqueous ar		GRAM):					
TYPE OF EMISSION SOURCE (CHECK AND	COMPLETE AF	PPROPRIATE	FORM B1-B	9 ON THE FO	LLOWING PA	AGES):	
Coal,wood,oil, gas, other burner (Form B1)	(Form B4)		☐ Manufac	t. of chemical	s/coatings/ink	s (Form B7)	
Int.combustion engine/generator (Form B2)		m B5)	_	ion (Form B8))		
☐ Liquid storage tanks (Form B3) ☐ Storage silos			Other (F	orm B9)			
START CONSTRUCTION DAT April 2017 OPERATION DAT	ΓE: No	vember 2018	DATE MANU	FACTURED:		2016 or Later	1
MANUFACTURER / MODEL NO.: NA		1			AY 7 DAY/WI	K 52 WK/YR	
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No NESH,			CT (SUBPAR	· ·			
	IAR-MAY 25	JUN-AUG		NOV 25	·		
EXPECTED ANNUAL HOURS OF OPERATION: 8,760	VISIBLE STAC						% OPACITY
CRITERIA AIR POLLUTAN				HIS SC	- Supplied		
	SOURCE OF		D ACTUAL			L EMSSIONS	
AID DOLL HTANT CHATTED	EMISSION		ROLS / LIMITS)		TROLS / LIMITS)		TROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM) PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	-	-	-	-	-	-
PARTICULATE MATTER<10 MICRONS (PM ₁₀) PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	-	-		-	-	-	
SULFUR DIOXIDE (SO2)	-	-	-	-	-	-	-
NITROGEN OXIDES (NOx)	-	-	-	-	-	-	
RBON MONOXIDE (CO)	-	-		_			- -
VOLATILE ORGANIC COMPOUNDS (VOC)		_	-				-
LEAD	0						-
OTHER							
HAZARDOUS AIR POLLUTA	NT EMISSIC	ONS INFOR	RMATION F	OR THIS S	OURCE		
	SOURCE OF		D ACTUAL			L EMSSIONS	
	EMISSION		ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	i .	TROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
NA						14111	
							<u> </u>
TOXIC AIR POLLUTANT	EMISSIONS	INFORMA	TION FOR	THIS SOU	RCE		
INDICATE EXPECTED AC	CTUAL EMISSIC	ONS AFTER C	CONTROLS / I	LIMITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb	/hr	lb/	day	lb	o/yr
Ammonia	Eng. Data	N	eg.	N	eg.	N	leg.

achments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe flow these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

EMISSION SOURCE (LIQUID STORAGE TANK)

REVISED 12/01/01 NCDENR/Division of Air Quality - App	NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate				
EMISSION SOURCE DESCRIPTION: Ammonia Tank		ION SOURCE ID NO: TK-3			
	CONTI	ROL DEVICE ID NO(S): NA			
OPERATING SCENARIO 1 of 1 EMISSION POINT (STACK) ID NO(S): NA					
EACH ST	ORAGE TANK				
DESCRIBE IN DETAIL THE STORAGE TANK (ATTACH FLOW DIAGRAM): TK-3 will have a capacity of 13,000 gallons and store aqueous ammonia.					
LIQUID STORED: Aqueous ammonia LIQU	IID MOLECULAR W	/EIGHT (LB/LB-MOLE): TBD			
		VEIGHT (LB/LB-MOLE): TBD			
		AVE. LIQUID SURFACE TEMP (PSIA): NA			
MIN. LIQUID SURFACE TEMP (F): NA MAX. LIQUID SURFACE TEMP (F	=): NA	MAX. TRUE VAPOR PRESS. (PSIA): NA			
BULK LIQUID TEMPERATURE (F): BREATHER VENT SETTINGS (P.	SIG) VACUUI	W PRESSURE			
SHELL DIAMETER (FT): 8.2 SHELL CONDITION: X GOOD	POOR	IS TANK HEATED:YES X NO			
SHELL COLOR: Grey/Light MAXIMUM THROUGHPUT (GAL/	YR): NA	MAXIMUM TURNOVERS PER YEAR: NA			
WORKING VOLUME (GAL): 13,400 ACTUAL THROUGHPUT (GAL/YF	R): NA	ACTUAL TURNOVERS PER YEAR: NA			
MAX. FILLS PER DAY: NA MAX. FILLING RATE (GAL/MIN):	NA	MIN. DURATION OF FILL (HR/FILL): NA	,		
VERTICAL FI	XED ROOF TA	·			
SHELL HEIGHT (FT): ROOF TYPE: X	CONE OR	DOME ROOF HEIGHT (FT):			
AVERAGE LIQUID HEIGHT (FT): ROOF CONDITION	I: X GOOD OR				
MAXIMUM LIQUID HEIGHT (FT): ROOF COLOR:	Grey				
HORIZO	NTAL TANKS				
SHELL LENGTH (FT): 32.9 IS TANK UNDERG	ROUND ?: YE	S X NO	· · · · · · · · · · · · · · · · · · ·		
	ROOF TANKS				
DESCRIBE PERTINENT TANK DATA SUCH AS DECKS, RIM-SEALS, LIQUID	DENSITY @ 60 DE	GF:			
NA					
DESCRIBE ANY MONITORING OR WARNING DEVICES (SUCH AS LEAK AND	D FUME DETECTION	IN INSTRUMENTATION):			
NA					
COMMENTS:					
			i		
1					
			196		

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division	on of Air C	Quality - Applic	ation for Air	Permit to Co	nstruct/Oper	ate		В
MISSION SOURCE DESCRIPTION:				EMISSION SOURCE ID NO: Fug-01				
Fugitive Leaks - Blowdowns				CONTROL DEVICE ID NO(S): NA				
OPERATING SCENARIO 1 of 1				EMISSION F	OINT (STACI	() ID NO(S):	NA	
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCES Fugitive Emissions from station blowdowns.	SS (ATTAC	CH FLOW DIAG	RAM):					
TYPE OF EMISSION SOURCE (CHEC	CK AND C	OMPLETE APP	PROPRIATE	FORM B1-B9	ON THE FOL	LOWING PA	GES):	
<u> </u>	odworking	(Form B4)		Manufac	t. of chemical	s/coatings/ink	s (Form B7))
	•	ng/printing (For	m B5)	_	tion (Form B8)	ı		
Liquid storage tanks (Form B3)	rage silos/b	oins (Form B6)		기 Other (F	orm B9)			
START CONSTRUCTION DAT April 2017 OPERA	TION DAT	E: No	vember 2018	DATE MANL	IFACTURED:		2016 or La	iter
MANUFACTURER / MODEL NO.: NA				OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	K 52 WK/Y	R
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No				ACT (SUBPAR				
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB		AR-MAY 25	JUN-AUG		NOV 25			
		VISIBLE STAC						% OPACITY
CRITERIA AIR POLL	LUIANI				THIS SOL	JRCE		
		SOURCE OF		D ACTUAL		POTENTIAL	1	
AIR POLLUTANT EMITTED		EMISSION		ROLS / LIMITS)	`	FROLS / LIMITS)	<u> </u>	NTROLS / LIMITS)
PARTICULATE MATTER (PM)		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM) PARTICULATE MATTER </td <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>		-		-	-	-	-	
PARTICULATE MATTER<2.5 MICRONS (PM-a)		-	•	-	-	-		-
SULFUR DIOXIDE (SO2)		_		-	-	-	<u> </u>	-
NITROGEN OXIDES (NOx)		_	-				<u> </u>	 -
ARBON MONOXIDE (CO)		-	-				<u> </u>	
VOLATILE ORGANIC COMPOUNDS (VOC)		Mass balance	4.30	18.84	4.30	18.84	4.30	18.84
LEAD				10.07	1.00	10.01	1.00	10.04
OTHER								
HAZARDOUS AIR POL	LLUTAN	T EMISSION	IS INFORM	NATION FO	OR THIS S	DURCE		
		SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSION	S
		EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	NTROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.		FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Hexane 110)-54-3	Mass balance	0.24	1.06	0.24	1.06	0.24	1.06
TOXIC AIR POLLU	****					RCE	848.11	
INDICATE EXPEC	CTED ACT	UAL EMISSION	IS AFTER CO	ONTROLS / LI	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.		EF SOURCE	lb.	/hr_	lb/	day		lb/yr
Hexane 110	-54-3	Mass balance	0.	24	5.	81	21	120.00
ttachments: (1) emissions calculations and supporting documentation				-1				

ktachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

FORM B9 EMISSION SOURCE (OTHER)

REVISED: 12/01/01 NCDENR/Division of Air Quality	- Application for Air	Permit to Construc	ct/Operate		B9
EMISSION SOURCE DESCRIPTION:		EMISSION SOUR	ICE ID NO:	Fug-01	
Fugitive Leaks - Blowdowns		CONTROL DEVIC	CE ID NO(S):	NA	
OPERATING SCENARIO: 1 of 1		EMISSION POINT	(STACK) ID NO(S):	NA	
DESCRIBE IN DETAIL THE PROCESS (ATTACH FLOW DIAGRAM):					
Fugitive Emissions from station blowdowns.					
MATERIALS ENTERING PROCESS - CONTINUOUS PROCESS		MAX. DESIGN	REQUEST	ED CAPACIT	ΓY
TYPE	UNITS	APACITY (UNIT/H	LIMITATIO	ON(UNIT/HR)	
Natural gas	NA	NA	NA		
	ļ				
	 				
	 				
MATERIALS ENTERING PROCESS - BATCH OPERATION	100000	MAX. DESIGN	DEOUEST	ED CADACI	7/
TYPE	LINITO	-		ED CAPACIT	
NA TIPE	UNITS	PACITY (UNIT/BAT	LIMITATION	(UNIT/BATC	H)
140			-		
		 			_
		-			
MAXIMUM DESIGN (BATCHES / HOUR): NA					
REQUESTED LIMITATION (BATCHES / HOUR): NA	(BATCHES/YR):	NA			
FUEL USED: NA	TOTAL MAXIMUM F		ON BTU/HP)	NA	
MAX. CAPACITY HOURLY FUEL USE: NA	REQUESTED CAPA			NA	
COMMENTS:	1				

Attach Additional Sheets as Necessary

SPECIFIC EMISSIONS SOURCE INFORMATION (REQUIRED FOR ALL SOURCES)

REVISED 12/01/01 NCDENR/Division of Air C	Quality - Applic	ation for Air	Permit to Co	nstruct/Opera	ate		В
MISSION SOURCE DESCRIPTION:		EMISSION SOURCE ID NO: F			Fug-02		
Fugitive Leaks - Piping				CONTROL DEVICE ID NO(S): NA			
OPERATING SCENARIO 1 of 1				EMISSION POINT (STACK) ID NO(S): NA			
DESCRIBE IN DETAILTHE EMISSION SOURCE PROCESS (ATTAC Fugitive Emissions from station piping leaks.	CH FLOW DIAG	GRAM):					
TYPE OF EMISSION SOURCE (CHECK AND C	OMPLETE APP	PROPRIATE I	FORM B1-B9	ON THE FOL	LOWING PAG	GES):	
☐ Coal,wood,oil, gas, other burner (Form B1) ☐ Woodworking	(Form B4)		Manufac Manufac	t. of chemical	s/coatings/ink	s (Form B7)	
☐ Int.combustion engine/generator (Form B2) ☐ Coating/finishi	ng/printing (For	m B5)	☐ Incinerat	ion (Form B8)			
Liquid storage tanks (Form B3)	oins (Form B6)		Other (F	orm B9)			
START CONSTRUCTION DAT April 2017 OPERATION DAT	E: No	vember 2018	DATE MANU	FACTURED:		2016 or La	ter
MANUFACTURER / MODEL NO.: NA		EXPECTED	OP. SCHEDU	LE: 24 HR/DA	Y 7 DAY/W	< 52 WK/Y	R
IS THIS SOURCE SUBJECT TO? NSPS (SUBPART?): No NESHA	P (SUBPART?)): No MA	ACT (SUBPAR	T?): No			
PERCENTAGE ANNUAL THROUGHPUT (%): DEC-FEB 25 M/	AR-MAY 25	JUN-AUG	25 SEP-I	NOV 25			
EXPECTED ANNUAL HOURS OF OPERATION: 8,760	VISIBLE STAC						% OPACITY
CRITERIA AIR POLLUTANT	EMISSIONS	INFORM/	ATION FOR	R THIS SOL	JRCE	W21 W 3	
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)
AIR POLLUTANT EMITTED	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
PARTICULATE MATTER (PM)	-	-	-	-	-	-	-
PARTICULATE MATTER<10 MICRONS (PM ₁₀)	-	-	-	-	-	-	
PARTICULATE MATTER<2.5 MICRONS (PM _{2.5})	-	-	-	-	-	-	
SULFUR DIOXIDE (SO2)	-	-	-	-	-	-	•
NITROGEN OXIDES (NOx)	-	-	-	-	-	-	•
CARBON MONOXIDE (CO)	-	-	-	-	-	-	
VOLATILE ORGANIC COMPOUNDS (VOC)	EPA	0.080	0.352	0.080	0.352	0.080	0.352
LEAD							
OTHER							
HAZARDOUS AIR POLLUTAN	IT EMISSIOI	VS INFORI	VIATION FO	OR THIS S	DURCE		
	SOURCE OF	EXPECTE	D ACTUAL		POTENTIAL	EMSSIONS	3
·	EMISSION	(AFTER CONT	ROLS / LIMITS)	(BEFORE CON	TROLS / LIMITS)	(AFTER CON	ITROLS / LIMITS)
HAZARDOUS AIR POLLUTANT AND CAS NO.	FACTOR	lb/hr	tons/yr	lb/hr	tons/yr	lb/hr	tons/yr
Hexane 110-54-3	Mass Balance	0.005	0.020	0.005	0.020	0.005	0.020
CONT							
TOXIC AIR POLLUTANT E	MISSIONS I	NFORMAT	TION FOR	THIS SOUP	RCE		
INDICATE EXPECTED ACT	UAL EMISSION	NS AFTER CO	ONTROLS / LI	MITATIONS			
TOXIC AIR POLLUTANT AND CAS NO.	EF SOURCE	lb	/hr	lb/	day		b/yr
Hexane 110-54-3	Mass Balance	0.0	005	0.1	110		40.0

ttachments: (1) emissions calculations and supporting documentation; (2) indicate all requested state and federal enforceable permit limits (e.g. hours of operation, emission rates) and describe how these are monitored and with what frequency; and (3) describe any monitoring devices, gauges, or test ports for this source.

FORM B9 EMISSION SOURCE (OTHER)

	i i cillit to constitu	an Operate	B9	
	EMISSION SOUR	CE ID NO: Fug-02		
	CONTROL DEVICE ID NO(S): NA			
	EMISSION POINT	F (STACK) ID NO(S): NA		
	MAY DESIGN	DECLIESTED CADACI	TV	
LIMITS				
-)	
INA	INA	NA		
		<u> </u>		
_				
2,0-2,0	MAX DESIGN	REQUESTED CAPACI	TY	
UNITS	_			
55	7.6111 (61411767)	LIMITY (OTTITION)	511)	
	_			
-	 			
	+			
	 			
1				
(BATCHES/YR):	NA			
		ON BTU/HR): NA		
		101		
		9		
	UNITS NA UNITS UNITS (BATCHES/YR): TOTAL MAXIMUM	EMISSION SOUR CONTROL DEVICE EMISSION POINT MAX. DESIGN UNITS APACITY (UNIT/FINA NA N	CONTROL DEVICE ID NO(S): NA EMISSION POINT (STACK) ID NO(S): NA MAX. DESIGN REQUESTED CAPACI UNITS APACITY (UNIT/H NA NA NA NA MAX. DESIGN REQUESTED CAPACI UNITS APACITY (UNIT/H LIMITATION(UNIT/HR NA NA NA NA MAX. DESIGN REQUESTED CAPACI UNITS PACITY (UNIT/BA LIMITATION (UNIT/BATO	

Attach Additional Sheets as Necessary

FACILITY-WIDE EMISSIONS SUMMARY NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

D1

REVISED 12/01/01

Ethylene Dibromide

lexane (or n-Hexane)

ormaldehyde

COMMENTS:

CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL EMISSIONS** POTENTIAL EMISSIONS POTENTIAL EMISSIONS (AFTER CONTROLS / (BEFORE CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) AIR POLLUTANT EMITTED tons/yr tons/yr tons/yr PARTICULATE MATTER (PM) 18.3 18.3 18.3 PARTICULATE MATTER < 10 MICRONS (PM10) 18.3 18.3 18.3 PARTICULATE MATTER < 2.5 MICRONS ($PM_{2.5}$) 18.3 18.3 18.3 SULFUR DIOXIDE (SO2) 3.10 3.10 3.10 NITROGEN OXIDES (NOx) 19.2 47.5 19.2 CARBON MONOXIDE (CO) 31.0 84.9 31.0 VOLATILE ORGANIC COMPOUNDS (VOC) 21.2 22.7 21.2 LEAD OTHER HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE **EXPECTED ACTUAL EMISSIONS** POTENTIAL EMISSIONS POTENTIAL EMISSIONS (AFTER CONTROLS / (BEFORE CONTROLS / (AFTER CONTROLS / LIMITATIONS) LIMITATIONS) LIMITATIONS) HAZARDOUS AIR POLLUTANT EMITTED CAS NO. tons/yr tons/yr tons/vr 1,1,2,2-Tetrachloroethane 79-34-5 1.66E-05 1.66E-05 1.66E-05 1,1,2-Trichloroethane 79-00-5 1.32E-05 1.32E-05 1.32E-05 1,1-Dichloroethane 75-34-3 9.78E-06 9.78E-06 9.78E-06 1.2-Dichloroethane 107-06-2 1.06E-05 1.06E-05 1.06E-05 1,2-Dichloropropane 78-87-5 1.12E-05 1.12E-05 1.12E-05 1,3-Butadiene 106-99-0 3.69E-04 5.33E-04 3.69E-04 3-Dichloropropene 542-75-6 1.10E-05 1.10E-05 1.10E-05 2,2,4-Trimethylpentane 540-84-1 2.12E-04 2.12E-04 2.12E-04 Acetaldehyde 106-99-0 0.017 0.032 0.017 Acrolein 75-07-0 0.004 0.007 0.004 Benzene 71-43-2 0.005 0.010 0.005 Biphenyl 92-52-4 9.88E-07 9.88E-07 9.88E-07 Carbon Tetrachloride 56-23-5 1.52E-05 1.52E-05 1.52E-05 TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q 0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY. Modeling Required? Note TOXIC AIR POLLUTANT EMITTED CAS NO. lb/hr lb/day lb/year Yes No 1.1.2.2-Tetrachloroethane 79-34-5 3.32E-04 0.008 0.033 Х 1 1,2-Dichloroethane 107-06-2 1.97E-04 0.005 0.021 х 1 1,3-Butadiene 106-99-0 0.004 0.099 0.739 1 x Acetaldehyde 75-07-0 0.042 1.02 34.4 1 х Acrolein 75-07-0 0.039 0.948 8.78 х 1 Ammonia 7664-41-7 2.83 67.9 24,773 1 Х Benzene 71-43-2 0.011 0.258 10.2 1 X Benzo(a)pyrene 50-32-8 2.84E-08 6.82E-07 2.84E-06 х 1 Carbon Tetrachloride 56-23-5 5.62E-04 0.013 0.030 X Chlorobenzene 108-90-7 2.22E-04 0.005 0.022 х 1 Chloroform 67-66-3 2.36E-04 0.006 0.024 Х 1 Dichlorobenzene 106-46-7 6.18E-06 1.48E-04 0.054 X

Note 1: The combustion sources proposed for the Northampton Compressor Station are exempt from NC DENR Air Toxics permitting requirements per 15A NCAC 02Q.0702(a)(25), as the aggregate allowable natural gas heat input value for these sources is less than 450 MMBtu/hr, and they will be the only source of benzene at the facility.

0.016

12.7

6.2

0.037

2,229

2,241

х

х

х

1

1

6.79E-04

0.528

0.258

106-93-4

50-00-0

110-54-3

FACILITY-WIDE EMISSIONS SUMMARY

REVISED 12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate D1									
CRITER	CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE								
	EXPECTED AC	TUAL EMISSIONS	POTENTIAL	. EMISSIONS	POTENTIAL	. EMISSIONS			
		(AFTER C	ONTROLS /	(BEFORE C	ONTROLS /	(AFTER C	(AFTER CONTROLS /		
	LIMITA	ATIONS)	LIMITATIONS)		LIMITA	TIONS)			
AIR POLLUTANT EMITTED		to	ns/yr	tor	іѕ/уг	tor	ıs/yr		
PARTICULATE MATTER (PM)]							
PARTICULATE MATTER < 10 MICRONS (PM ₁₀)]							
PARTICULATE MATTER < 2.5 MICRONS (PM _{2.5}))]							
SULFUR DIOXIDE (SO2)									
NITROGEN OXIDES (NOx)			See Form D1, I	Page 1, for cri	teria pollutant	totals.			
CARBON MONOXIDE (CO)]							
VOLATILE ORGANIC COMPOUNDS (VOC)]							
LEAD]							
OTHER									
HAZARDO	OUS AIR POLLU	TANT EMISSION	IS INFORMATION	- FACILITY-	WIDE				
		EXPECTED AC	TUAL EMISSIONS	POTENTIAL	EMISSIONS	POTENTIAL	EMISSIONS		
		(AFTER C	ONTROLS /	(BEFORE C	ONTROLS /	(AFTER C	ONTROLS /		
		LIMITA	ATIONS)	LIMITA	TIONS)	LIMITA	TIONS)		
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	to	ns/yr	tor	ıs/yr	ton	ıs/yr		
Chlorobenzene	108-90-7	1.1	1E-05	1.11	E-05	1.11	E-05		
Chloroform	67-66-3	1.1	BE-05	1.18	BE-05	1.18	E-05		
Dichlorobenzene	106-46-7	2.7	1E-05	2.71E-05		2.71	E-05		
Ethylbenzene	100-41-4	0.	012	0.024		0.024		0.0	012
Ethylene Dibromide	106-93-4	1.84E-05		1.84E-05		1.84E-0			
Formaldehyde	75-07-0	1.11		2.21		1.	11		
Hexane (or n-Hexane)	110-54-3	1.12		1.	12	1.	12		
Methanol	67-56-1	6.2	1E-04	6.21E-04		6.21	E-04		
Methylene Chloride	75-09-2	3.6	BE-05	3.68E-05		3.68	E-05		
Napthalene	91-20-3	5.34	4E-04	0.001		5.34	E-04		
PAH		8.73	3E-04	0.002		8.73	E-04		
Phenol	108-95-2	1.09	5E-05	1.05	E-05	1.05	E-05		
Propylene oxide	75-56-9	0.	011	0.0	022	0.0	011		
Styrene	100-42-5	1.3	7E-05	1.37E-05		1.37	E-05		
Toluene	108-88-3	0.	050	0.1	100	0.0	050		
TOXIC	AIR POLLUTAN	IT EMISSIONS IN	IFORMATION - FA	ACILITY-WID	E				
INDICATE REQUESTED ACTUAL EMISSIONS A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION	FTER CONTROLS N MODELING. US	LIMITATIONS. E E NETTING FORM	MISSIONS ABOVE D2 IF NECESSAR	THE TOXIC P /.	ERMIT EMISSI	ON RATE (TPI	ER) IN 15A		
					Modeling I	Required ?	Note		
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	1		
Methylene Chloride	75-09-2	7.36E-04	0.018	0.074		х	1		
Phenol	108-95-2	2.11E-04	0.005	0.021		х	1		
Styrene	100-42-5	2.74E-04	0.007	0.027		х	1		
Toluene	108-88-3	0.016	0.388	99.8		x	1		
Vinyl Chloride	75-01-4	1.24E-04	0.003	0.012		х	1		
Xylene	1330-20-7	0.007	0.166	49.0		x	11		
}									

COMMENTS:

Note 1: The combustion sources proposed for the Northampton Compressor Station are exempt from NC DENR Air Toxics permitting requirements per 15A NCAC 02Q.0702(a)(25), as the aggregate allowable natural gas heat input value for these sources is less than 450 MMBtu/hr, and they will be the only source of benzene at the facility.

FACILITY-WIDE EMISSIONS SUMMARY

REVISED 12/01/01

NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate

D1

CRITERIA AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE							
EXPECTED ACTUAL EMISSIONS POTENTIAL EMISSIONS POTENTIAL E							
ì	(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /				
===	LIMITATIONS)	LIMITATIONS)	LIMITATIONS)				
AIR POLLUTANT EMITTED	tons/yr	tons/yr	tons/yr				
PARTICULATE MATTER (DM)							

PARTICULATE MATTER (PM)

PARTICULATE MATTER < 10 MICRONS (PM₁₀)

PARTICULATE MATTER < 2.5 MICRONS (PM2.5)

SULFUR DIOXIDE (SO2)

NITROGEN OXIDES (NOx)

CARBON MONOXIDE (CO)

VOLATILE ORGANIC COMPOUNDS (VOC)

LEAD

OTHER

See Form D1, Page 1, for criteria pollutant totals.

HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE									
		EXPECTED ACTUAL EMISSIONS	POTENTIAL EMISSIONS	POTENTIAL EMISSIONS					
		(AFTER CONTROLS /	(BEFORE CONTROLS /	(AFTER CONTROLS /					
		LIMITATIONS)	LIMITATIONS)	LIMITATIONS)					
HAZARDOUS AIR POLLUTANT EMITTED	CAS NO.	tons/yr	tons/yr	tons/yr					
Vinyl Chloride	75-01-4	6.18E-06	6.18E-06	6.18E-06					
Xylene	1330-20-7	0.024	0.049	0.024					
Arsenic Compounds		4.51E-06	4.51E-06	4.51E-06					
Beryllium	7440-41-7	2.71E-07	2.71E-07	2.71E-07					
Cadmium	7440-43-9	2.48E-05	2.48E-05	2.48E-05					
Chromium Compounds		3.16E-05	3.16E-05	3.16E-05					
Cobalt	7440-48-4	1.89E-06	1.89E-06	1.89E-06					
Manganese Compounds		8.57E-06	8.57E-06	8.57E-06					
Mercury	7439-97-6	5.86E-06	5.86E-06	5.86E-06					
Nickel	7440-02-0	4.73E-05	4.73E-05	4.73E-05					
Selenium	7782-49-2	5.41E-07	5.41E-07	5.41E-07					

TOXIC AIR POLLUTANT EMISSIONS INFORMATION - FACILITY-WIDE

INDICATE REQUESTED ACTUAL EMISSIONS AFTER CONTROLS / LIMITATIONS. EMISSIONS ABOVE THE TOXIC PERMIT EMISSION RATE (TPER) IN 15A NCAC 2Q .0711 MAY REQUIRE AIR DISPERSION MODELING. USE NETTING FORM D2 IF NECESSARY.

			Modeling f	Required ?	Note		
TOXIC AIR POLLUTANT EMITTED	CAS NO.	lb/hr	lb/day	lb/year	Yes	No	
Arsenic Compounds		1.03E-06	2.47E-05	0.009		Х	1
Beryllium	7440-41-7	6.18E-08	1.48E-06	5.41E-04		Х	1
Cadmium	7440-43-9	5.66E-06	1.36E-04	0.050		Х	1
Chromium Compounds		7.21E-06	1.73E-04	0.063		Х	1
Manganese Compounds		1.96E-06	4.69E-05	0.017		Х	1
Mercury	7439-97-6	1.34E-06	3.21E-05	0.012		Х	1
Nickel	7440-02-0	1.08E-05	2.59E-04	0.095		Х	1

COMMENTS:

Note 1: The combustion sources proposed for the Northampton Compressor Station are exempt from NC DENR Air Toxics permitting requirements per 15A NCAC 02Q.0702(a)(25), as the aggregate allowable natural gas heat input value for these sources is less than 450 MMBtu/hr, and they will be the only source of benzene at the facility.

AIR POLLUTANT NETTING WORKSHEET

vised:12/01/01	d:12/01/01 NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate							
PURPOSE OF NETTING: X	AIR TOXICS PSD (100/250 tons per year	r) PSD SIGNIFICANT LEVELS						
AIR POLLUTANT: All (See Form D1) CAS NO.:								
EMISSION SOURCE ID NOS.:	Facility-Wide							
SEC	TION A - EMISSION OFFSETTING AN	IALYSIS FOR MODIFIED/NEV	N SOURCES					
Summarize in this section		NS - USE APPROPRIATE COLUMN	SONLY					
using the B forms	LB/YEAR	LB/DAY	LB/HR					
MODIFICATION	See comments below							
INCREASE								
- MINUS -	- MINUS -	- MINUS -	- MINUS -					
MODIFICATION								
. DECREASE	}							
= EQUALS =	= EQUALS =	= EQUALS =	= EQUALS =					
NET CHANGE								
FROM MODIFICATION								
	SECTION B - FACILITY-WIDE E	MISSION NETTING ANALYS	IS STATE OF THE ST					
CREDITABLE	See comments below							
INCREASE								
- MINUS -	- MINUS -	- MINUS -	- MINUS -					
CREDITABLE								
DECREASE								
= EQUALS =	= EQUALS =	= EQUALS =	= EQUALS =					
NET CREDITABLE								
CHANGE	i i		1					
	SECTION C - FACILIT	Y-WIDE EMISSIONS						
TOTAL FACILITY	See comments below							
EMISSIONS		199						
TPER LEVELS (2Q .0711)								
CHECK HERE IF AN AIR DISPERS	ION MODELING ANALYSIS IS REQUIRED							
COMMENTS:	-							
permitting requirements pe	roposed for the Northampton Comp er 15A NCAC 02Q.0702(a)(25), as the MBtu/hr, and they will be the only so	aggregate allowable natural	gas heat input value for these					

EXEMPT AND INSIGNIFICANT ACTIVITIES SUMMARY

NCDENR/Division of Air Quality - Application for Air Permit to Construct/Operate **D4** VISED: 12/01/01 ACTIVITIES EXEMPTED PER 2Q .0102 OR INSIGNIFICANT ACTIVITIES PER 2Q .0503 FOR TITLE V SOURCES SIZE OR BASIS FOR EXEMPTION OR INSIGNIFICANT **DESCRIPTION OF EMISSION SOURCE** PRODUCTION RATE ACTIVITY Per 15A NCAC 2Q.0102(h)(1)(B), fuel combustion equipment 1. Natural Gas Boiler (used for building heat) 5.25 MMBtu/hr (excluding internal combustion engines) firing exclusively natural gas or liquefied petroleum gas or a mixture of these fuels TK-1, Pipeline Liquids Storage Tank, will receive and store pipeline Per 15A NCAC 02Q.0102(g)(14)(B), sources for which there 2. 1,000 gallons liquids captured by the station's separators and filter-separator. are no applicable requirements. Per 15A NCAC 02Q.0102(g)(4), storage tanks with no TK-2, Hydrocarbon Waste Tank, will receive and store used oil 2,500 gallons used in oil-filled operational equipment throughout the facility. applicable requirements other than Stage I controls pursuant to 15A NCAC 02D.0928, Gasoline Service Stations Stage I. TK-3, Aqueous Ammonia Storage Tank, will be used to supply Per 15A NCAC 02Q.0102(g)(4), storage tanks with no 13,400 gallons aqueous ammonia to the SCRs. applicable requirements other than Stage I controls pursuant to 15A NCAC 02D.0928, Gasoline Service Stations Stage I. TK-4, Odorant Storage Tank Per 15A NCAC 02Q.0102(g)(14)(B), sources for which there 6,000 gallons are no applicable requirements. 8. 9. 10.

TECHNICAL ANALYSIS TO SUPPORT PERMIT APPLICATION

RE	VISED: 12/01/01	NCDENR/Division of Air Quality - Application for Air F	Permit to Construct/Operate	D5
1		ROVIDE DETAILED TECHNICAL CALCULATIONS TO SUPP		
	DEM	MONSTRATIONS MADE IN THIS APPLICATION. INCLUDE		
		NECESSARY TO SUPPORT AND CLARIFY CALCULA FOLLOWING SPECIFIC ISSUES		
A	BEFORE AND, WHE	NS SOURCE (EMISSION INFORMATION) (FORM B) - SHOW CAL ETHODS FROM WHICH THE POLLUTANT EMISSION RATES IN TI ERE APPLICABLE, AFTER CONTROLS. CLEARLY STATE ANY AS AL BALANCE CALCULATIONS.	CULATIONS USED, INCLUDING EMISSION FACTORS, MATER HIS APPLICATION WERE DERIVED. INCLUDE CALCULATION	OF POTENTIAL
В	REQUIREMENTS) F RATES OR OTHER SIGNIFICANT DETE POLLUTANTS (NES FACILITY. SUBMIT	N SOURCE (REGULATORY INFORMATION) (FORM E2 - TITLE V C DES AND THE FACILITY AS A WHOLE. INCLUDE A DISCUSSION FOR COMPLYING WITH APPLICABLE REGULATIONS, PARTICULA OPERATIONAL PARAMETERS. PROVIDE JUSTIFICATION FOR ERIORATION (PSD), NEW SOURCE PERFORMANCE STANDARDS SHAPS), TITLE V), INCLUDING EXEMPTIONS FROM THE FEDERA ANY REQUIRED TO DOCUMENT COMPLIANCE WITH ANY REGULACTURE, CONTROL EQUIPMENT, ETC. TO SUPPORT THESE CA	OUTING METHODS (e.g. FOR TESTING AND/OR MONITORING ARLY THOSE REGULATIONS LIMITING EMISSIONS BASED ON AVOIDANCE OF ANY FEDERAL REGULATIONS (PREVENTION IS (NSPS), NATIONAL EMISSION STANDARDS FOR HAZARDOUS LE REGULATIONS WHICH WOULD OTHERWISE BE APPLICABULATIONS. INCLUDE EMISSION RATES CALCULATED IN ITEM	G N PROCESS OF JS AIR LE TO THIS
С	ON SECTION C FOR PARAMETERS (e.g. TO ENSURING PRO CONTROL DEVICES	ANALYSIS (FORM C) - PROVIDE A TECHNICAL EVALUATION WIRMS, OR USED TO REDUCE EMISSION RATES IN CALCULATION OPERATING CONDITIONS, MANUFACTURING RECOMMENDAT OPER PERFORMANCE OF THE CONTROL DEVICES). INCLUDE AS AS EMPLOYED AT THIS FACILITY. DETAIL PROCEDURES FOR EMS AND MAINTENANCE TO BE PERFORMED.	IS UNDER ITEM "A" ABOVE. INCLUDE PERTINENT OPERATIN IONS, AND PARAMETERS AS APPLIED FOR IN THIS APPLICA AND LIMITATIONS OR MALFUNCTION POTENTIAL FOR THE P	IG TION) CRITICAL ARTICULAR
D	PROCESS, OPERAT ITEM "B" WHERE AF	ERATIONAL COMPLIANCE ANALYSIS - (FORM E3 - TITLE V ONL FIONAL, OR OTHER DATA TO DEMONSTRATE COMPLIANCE. RE PPROPRIATE. LIST ANY CONDITIONS OR PARAMETERS THAT (BLE REGULATIONS.	FER TO COMPLIANCE REQUIREMENTS IN THE REGULATOR	RY ANALYSIS IN
E	A PROFESSIONAL	IGINEERING SEAL - PURSUANT TO 15A NCAC 2Q .0112 ENGINEER REGISTERED IN NORTH CAROLINA SHALL BE REQU D MODIFICATIONS OF EXISTING SOURCES. (SEE INSTRUCTIO	"APPLICATION REQUIRING A PROFESSIONAL ENGINEERING JIRED TO SEAL TECHNICAL PORTIONS OF THIS APPLICATIO INS FOR FURTHER APPLICABILITY).	SEAL," N FOR
	l,	, attest that this appli	cation for	
		has been reviewed by me and	d is accurate, complete and consistent with the information	supplied
	in the engineering	plans, calculations, and all other supporting documentation to	the best of my knowledge. I further attest that to the best	of my
	knowledge the prop	posed design has been prepared in accordance with the appl	licable regulations. Although certain portions of this submi	ttal
	and have judged it	been developed by other professionals, inclusion of these m to be consistent with the proposed design. Note: In accorda	iaterials under my seal signifies that I have reviewed this ri ince with NC General Statutes 143-215 6A and 143-215 6I	laterial R anv
	person who knowir	ngly makes any false statement, representation, or certificatio	n in any application shall be guilty of a Class 2 misdemear	
	may include a fine	not to exceed \$10,000 as well as civil penalties up to \$25,000	Diper violation.	
	(PLEASE USE BLUE	INK TO COMPLETE THE FOLLOWING)	PLACE NORTH CAROLINA SEAL HER	₹E
	NAME:	Jeffrey H. Twaddle, P.E.		
	DATE:	5/12/2017	JANGARO/%.	
	COMPANY:	ERM Southeast, Inc.	1/2000	//
	ADDRESS:	5000 Meridian Blvd., Ste. 300, Franklin, TN 37067		C/h
-	TELEPHONE:	615-656-7100/	The state of the s	
	SIGNATURE:	sign strudge	19323 / 748	7
	PAGES CERTIFIED:	Attachment A Form C3 for CT-01-SCR & CT-01-OC,		
		CT-02-SCR & CT-02-OC, and		
		CT-03-SCR & CT-03-OC	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	/IP	Attachment C - Potential to Emit Calculations		
	(IL	DENTIFY ABOVE EACH PERMIT FORM AND ATTACHMENT		

ATTACHMENT B

FACILITY PLOT PLAN

ATTACHMENT C

POTENTIAL TO EMIT CALCULATIONS

<u>Table C-1 Permit to Construct Application Project Equipment List</u> ACP Compressor Station 3 - Northampton County, North Carolina

Emission				Doted
Point ID	Source	Manufacturer	Model/Type	Canacity
CT-01	Compressor Turbine	Solar Turbines	Taurus 70-10802S	10.915 hp
CT-02	Compressor Turbine	Solar Turbines	Centaur 50-6200LS	6.200 hp
CT-03	Compressor Turbine	Solar Turbines	Centaur 40-4700S	4.700 hp
EG-01	Emergency Generator	Caterpillar	G3516B	1.818 hp
EG-02	Emergency Generator	Generac	SG100	148.9 hp
WH-01	Boiler	Hurst	90W	5.25 MMBtu/hr
FUG-01	Fugitive Leaks - Blowdowns	-		1
FUG-02	Fugitive Leaks - Piping		,	
TK-1	Pipeline Liquids Tank		'	1.000 gal
TK-2	Hydrocarbon (Waste Oil) Tank			2.500 gal
TK-3	Ammonia Tank	-		13,400 gal

Table C-2 Potential Emissions From Combustion Sources

ACP Compressor Station 3 - Northampton County, North Carolina

Turbine Operational Parameters:

8,677	0	20	33.3	th 7250
Normal Hours of Operation:	Hours at Low Load (<50%)	Hours of Low Temp. (< 0 deg. F)	Hours of Start-up/Shut-down	Total Hours of Orgenstion (br/vr)

Emergency Generator Operational Hours: Normal Hours of Operation: 100

Normal Hours of Operation: 8,760 Boiler/Heater Operational Parameters:

Pre-Control Potential to Emit

THE PROPERTY OF THE PARTY OF TH	Power							Critter	ria Pollutants ((tpy)						GHG Emis	issions (tpy)		Ammonia (tpy)	HAP (tov)
Combustion Sources	Rating	Units	Fuel	NOX	8	Noc	802	Total PM	Total PM10	Total PM2.5	PWF	PMF-10	PMF-2.5	PMC	C02	CHA	NZO	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	10,915	ф	Natural Gas	14.9	23.8	1.36	1.43	8,41	8.41	8.41	2.42	2.42	2.42	5 99	49.980	3 62	1.26	50 446	577	0 525
Solar Centaur 50L Turbine	6,200	dų	Natural Gas	9,25	14.8	0.834	0.894	5,26	5.26	5.26	1.51	1.51	1,51	3.74	31,295	2.26	0.788	31.587	3.58	0.352
Solar Centaur 40 Turbine	4,700	ф	Natural Gas	22.0	25.6	0.702	0.760	4.47	4.47	4.47	1.29	1.29	1.29	3.18	26.718	1.92	0.671	26.966	3.02	0.286
Caterpillar G3516B Egen	1.818	ф	Natural Gas	0.100	0.499	0.108	3.88E-04	0.032	0.032	0.032	0.025	0.025	0.025	0.007	101	0.859	0	122	0	0 0 18
Generac SG100 Egen	148.9	ф	Natural Gas	4,92E-05	9,85E-04	0.003	3,18E-05	0.003	0.003	0.003	0.002	0.002	0.002	0.001	759	0.015	0	759	0	0.002
Boiler	5.25	MMBtu/hr	Natural Gas	1,13	1.89	0.124	0.014	0.171	0.171	0.171	0.043	0.043	0.043	0.129	2,705	0,052	0.050	2,721	0	0.043
Total (tons/yr)	(M)			47.3	9.99	3.13	3.10	18.3	18.3	18.3	5.29	5.29	5.29	13.1	111.559	8.72	2.77	112.602	12.4	1.23

Turbine Control Efficiencies

Control Technology	×ON	8	VOC
Selective Catalytic Reduction (Centaur 40)	80%		,
Selective Catalytic Reduction (All Others)	%11		,
Oxidation Catalyst (Centaur 40)	,	%06	20%
Oxidation Catalyst (All Others)	,	80%	20%

Post-Control Potential to Emit

	Power							Criteria	in Poliutants	(tpy)						GHG Emis	Emissions (tpv)		Ammonia (tpy)	HAP (tov)
Combustion Sources	Rating	Units	Fuel	NOx	ខ	VOC	302	Total PM	Total PM10	Total PM2.5	PMF	PMF-10	PMF-2.5	PMC	C02	CH4	N2O	C02e		Total HAP
Solar Taurus 70 Turbine	10915	hp	Natural Gas	8,25	4.76	0.680	1,43	8.41	8,41	8.41	2,42	2,42	2.42	5.99	49,980	3,62	1.26	50,446	5.77	0.525
Solar Centaur 50l, Turbine	6200	hр	Natural Gas	5.14	2.96	0.417	0.894	5,26	5,26	5.26	1,51	1,51	1,51	3.74	31,295	2.26	0,788	31,587	3,58	0.352
Solar Centaur 40 Turbine	4700	hp	Natural Gas	4.39	2.56	0.351	0.760	4.47	4.47	4.47	1,29	1.29	1.29	3.18	26,718	1.92	0.671	26,966	3.02	0.286
Caterpillar G3516B Egen	1818	hp	Natural Gas	0,100	0.499	0,108	3.88E-04	0.032	0.032	0.032	0.025	0.025	0.025	200'0	101	0.859	o	122	0	0.018
Generac SG100 Egen	148.9	dh	Natural Gas	4 92E-05	9,85E-04	0.003	3.18E-05	0.003	0.003	0.003	0.002	0.002	0.002	0.001	759	0.015	-	759	0	0 002
Boiler	5.25	MMBtu/hr	Natural Gas	1,13	1.89	0.124	0.014	0:171	0.171	0.171	0.043	0.043	0.043	0,129	2,705	0.052	0.050	2,721	0	0.043
Total (tons/vr)	(MA			19.0	12.7	1.68	3.10	18.3	18.3	18.3	5.29	5.29	5.29	13.1	111.559	8.72	2.77	112.602	12.4	1.23

- (1) Turbine emissions are calculated by the following formula: ER * Run Hours / 2000 * (1 Control Efficiency)

 RE = Emission Rate for particular equipment and poliulant (Ibs/hr)

 2000 = the amount of bis in a ton

 (2) Emergency Generator emissions are calculated by the following formula: Power Rating = Figure by rating in the following formula: Power Rating = Equal by failing (ht)

 EF = Emission Factor from either manufacturer's data or AP-42 (Ibhp-hr)

 2000 = the amount of Ibs in a ton

 (3) Bolier/heater emissions calculated by the following formula: EF * Power Rating * Bolier/heater emission search (IbMMSCF)

 EF = AP-42 Emission Factor (IbMMMSCF)

 FOWER Rating = Bolier/heater emission Factor (IbMMSCF)

 (4) Turbines are equipped with Selective Calalytic Reduction (SCR) and oxidation catalyst has a control of 90% for CO

 (5) Taurus Centaur 40 doxidation catalyst has a control of 90% for CO

 (6) Emergency generator engite by taken from manufacturer data

 (7) Bolier assumed to have low-NOx burners

 (8) See Emissions Factors table for Emissions Factors to each operating scenario.

 (9) See Emissions Factors table for Emissions Factors for each operating scenario.

 (10) Each start-up/shut-down event assumed to last 10 minutes

<u>Table C-3 Event Based Potential Emissions From Combustion Sources</u> ACP Compressor Station 3 - Northampton County, North Carolina

Start-up Emissions

	Power			Start-up	Cr	incle Pollutants (Wd	GHG	Emissions	(tby)
Combustion Sources	Rating	Units	Fuel	Events	MOX	00	NOC	COZ	CHA	C02e
Solar Taurus 70 Turbane	10,915	hp	Natural Gas	100	0.040	366	0.042	25.85	0 168	30.2
Solar Centaur 50L Turbine	6,200	hp	Natural Gas	100	0.040	3.46	D 040	23.45	0.180	27.45
Solar Centaur 40 Turbine	4,700	hp	Natural Gas	100	0 035	3 22	0 037	19 80	0.148	23 30

	Tana and	20110	-	PANIE	202	2	3	400	2	2000
Solar Taurus 70 Turbane	10,915	hp	Natural Gas	100	0.040	366	0.042	25.85	0.168	30.2
Solar Centaur 50L Turbine	6,200	å	Natural Gas	100	0.040	3.46	D 040	23.45	0 180	27.45
Solar Centaur 40 Turbine	4,700	h	Natural Gas	100	0.035	3.22	0 037	19 80	0.148	23 30
	Total (tons.)	(VV)			0.115	10.33	0.119	0.69	0.478	80.9
Shutdown Emissions										
	Power			Shutdown	C	Criteria Poliutants ((Act)	GHG E	Emissions	(ACI)
Combustion Sources	Rating	Units	Fuel	Events	NOx	00	200	C02	CH4	CO2e
Solar Taurus 70 Turbine	10,915	hp	Natural Gas	100	0 055	4 67	0.053	288	0.212	34.1
Solar Centaur 50L, Turbine	6,200	hp	Natural Gas	100	0 0 0 0	1,770	0.020	10.85	0 080	12.85
Solar Centaur 40 Turbine	4,700	μb	Natural Gas	100	0.015	1.510	0.017	9 05	0.068	10.75
	Total thousand	Ann			0000	7.050	0000	ļ	0000	

Total SUSD Emissions (fons./yr)

Compressor Blowdown, Emissions Source Designation

Blowdown Start-up Events

Blowdown from Start-up Volumetre flow rate Methane Molecular Weight Methane Percent Weight Start-up Blowdown

Blowdown Shutdown Events

_	_	_	_
sclievent	scf-lbmol	lomdi-di	7
83000	385	16	%EB
Blowdown from Shutdown	Volumetric flow rate	Methane Molecular Weight	Methane Percent Weight

Gas Composition

Wt. Fraction ^[1] (wt. %)			2,71%	1,69%	89.47%	5.20%		1.43%	0.29%	0.27%	95600	0.10%	0.19%	0.29%	2.62%	0.15%
(Volume) Fraction fmol ⁴ 4			1,041%	0.994%	94.21%	2.923%		0.546%	0.084%	26200	0.022%	0.024%	0.032%	0.049%		
Molecular Weight (ib/fb-mol)	16.89		10'11	28.01	16.04	30.07		44.10	58.12	58.12	72.15	72.15	78.11	100.21		
Pollount	Total Stream Molecular Weight	Nam-VOC	Carlem Dioxide	Nitrogen	Methans	Ethane	304	Propage	n-Bulane	lsoButane	n-Pentane	lsol'entare	n-Hexane	n-Heptane	Total VOC Fraction	Total HAP Fraction

Blowdown from Startup Evening

	do-simo		5	PITO CITHOSPICES	(db)	
Combustion Sources	Events	voc	200	CH4	C02e	HAPs
Solar Taurus 70 Turbine	100	2.216	2.293	75.834	1,893	0.125
Solar Centaur 50L Turbine	100	2,216	2.293	75 834	1,893	0.125
Solar Centaur 40 Turbine	100	2,216	2.293	75 634	1,893	0.125
Total (tons/yr)		6.649	6.880	227	5,679	0,375

Blawdown from Shutdown Events

	Startup		3	1G Emissions	(tpy)	1000
Combustion Sources	Events	VOC	C02	CH4	COZe	HAPs
Solar Taurus 70 Turbine	100	3.675	3.80	125 39	3,139	0.207
Solar Centaur 50L Turbane	100	3 675	3.80	125 39	3,139	0.207
Solar Centaur 40 Turbine	100	3 675	3 80	125 39	3,139	0 207
Total Assessment		44.024	20.00	174.0	0 440	0000

Site-Wide Blowdown Events

m 2,000,000 sct/event	385 scf-bmol	Weight 16 lb-lbmol	Verght 93% %	AR GGIT Interest
ste-Wide Blawdow	Numetine flow rate	Jethane Molecular	Methane Percent Weig	Ste.Wide Blowdown

Blowdown from Sile Wide Brents

	dreign		3	TO EMISSIONS	(tDy)	
Combustion Sources	Events	VOC	202	CH4	COZe	HAPs
ACP-3	-	1 167	1.21	39.8	988	9900
Total (tons/yr)	_	1.167	1.21	39.8	966	0.066

1 18.8 19.5 643
_
18.8

ACP Compressor Station 3 - Northampton County, North Carolina Table C-4 Combustion Source Criteria Pollutant Emission Factors

					Solar	Turbine No	rmal Operation	Solar Turbine Normal Operation Emission Factors (Ib/hr)	(lb/hr)						
Equipment Name	Fuel	Units	NOX	00	VOC	S02	PIMF	PMF-10	PMF-2.5	PMC	C02	CH4	N20	COZe	NH3
Solar Centaur 40 Turbine	Natural Gas	lb/hr	4.70	5.70	0.160	0.17	0.29	0.29	0.29	0.73	6100	0.44	0.15	6157	0.690
Solar Centaur 50L Turbine	Natural Gas	lb/hr	1.98	3.30	0.190	0.20	0.35	0.35	0.35	0.85	7145	0.52	0.18	7212	0.818
Solar Taurus 70 Turbine	Natural Gas	lb/hr	3.18	5.30	0.310	0.33	0.55	0.55	0.55	1.37	11411	0.83	0.29	11517	1.317
			1.7808	1.06	0.155										
			1.1088	99'0	0.095										
			0.94	0.57	0.08										

(1) Pre-Control Emission Rates for NOx, CO, VOC, PMF, PMC, and CO2 taken from Solar Turbine Data at 100% load and 0 degrees F
(2) Emission Factors for SO2, CH4, N20 taken from AP-42 in (IbsMMBtu) and multiplied by turbine fuel throughput by Solar Turbine at 100% load and 0 degree F to get Emission Rates

(3) Assume PMF=PMF-10=PMF-2 5. Fillerable and Condensable based on Scier Turbine Emission Factor and ratio of AP-42 Table 3.1 factors (4) NH3 emission rates based on a 10 ppm ammonia slip from the SCR based on manufacturer information (5) CO2e emission rate calculated by multiplying each GHG (CO2, CH4, N2O) by its Global Warming Potential (GWP) and adding them together (6) CO2 GWP = 1; CH4 GWP = 25; N2O GWP = 298 [40 CFR Part 98]

	Solar	Turbine Al	Solar Turbine Alternate Operation Emission Factors	ration Emis	sion Facto	rs (lb/hr)		
			٧	< 0 degrees F		Solar	Turbine Low Load F Operation	1 F Operation
Equipment Name	Fuel	Units	NOX	ဝ	Noc	NOX	8	200
Solar Centaur 40 Turbine	Natural Gas Ib/hr	lb/hr	62.7	34.2	0.320	38.6	2,280	6.40
Solar Centaur 50L Turbine	Natural Gas Ib/hr	lb/hr	26.4	19.8	0.380	15.4	1,320	7.60
Solar Taurus 70 Turbine	Natural Gas Ib/hr	lb/hr	42.4	31.8	0.620	24.7	2,120	12.4
			23.744	6.36	0.31			
			14.784	3.96	0.19			
			12,533333	3.42	0.16			

(1) Pre-Control low temperature Emission Rates for NOx, CO, VOC. Conservatively assume 120 ppm NOx, 150 ppm CO, and 5 ppm VOC (10% of UHC) per Table 2 of Solar PIL 167 (2) Pre-Control low load Emission Rates for NOx, CO, VOC. Conservatively assume 70 ppm NOx, 10,000 ppm CO, and 100 ppm VOC (10% of UHC) per Table 4 of Solar PIL 167

			Sol	Solar Turbine S	Start-up and	and Shutdown Emission F	factors (3b)	/event)					
					Start-up EFs	2			S	Shutdown EFs	.60		
Equipment Name	Fuel Units	NOx	CO	VOC	C02	CH4	COZe	NOX	8	200	C02	CH4	CO2e
Solar Centaur 40 Turbine	Natural Gas Ib/eve	int 0.7	64.4	0.7	392	3.0	466	0.3	30.2	0,3	181	1.4	215
Solar Centaur 50L Turbine	Natural Gas Ib/eve	int 0.8	69.1	0.8	469	3.2	549	0.4	35.4	0.4	217	1.6	257
Solar Taurus 70 Turbine	Natural Gas Ib/eve	int 0.8	73.1	0.8	519	3.4	603	1.1	93.4	-	575	42	681

(1) Start-up and Shutdown Emissions based on Solar Turbines incorporated Product Information Letter 170: Emission Estimates at Start-up, Shutdown, and Commissioning for

SoLoNOx Combustion Products (13 June 2012). Emission Estimates do not include SO2, PM, N2O, or any HAPs, (2) VOCs assumed to be 20% of UHC and CH4 assumed to be 80% of UHC. CO20se ensured to be 20% of UHC and CH4 assumed to be 80% of UHC. (3) CO2e ensured to acloulated by multiplying each GHG (CO2, CH4) by its Global Warming Potential (GWP) and adding them together (4) CO2 GWP = 1; CH4 GWP = 25, [40 CFR Part 68]

CH4 2.3 0.009445 101 9472 0 001954 120000 1.111131 PMC 5.7 7.19565E-05 7.19565E-05 0.000278822 0.000278822 PMF-2.5 0 000278822 Engine and Boller Emission Factors SO2 PMF PMF-10 0.6 1.9 1.9
 NOx
 CO
 VC
 CO
 CO Fuel Units
Natural Gas Ib/MMscf
Natural Gas Ib/hp-hr
Natural Gas Ib/hp-hr Equipment Type
Boiler < 100 MMBtu
1300 KW Caterpillar Egen
100 kW Generac Egen

(1) Emission factors for natural gas boilers taken from AP-42 Tables 1.4-1 & 1.4-2

Boiler assumed to have fow-NOx burners 3

(3) Emission Factors for Space & Water Heaters taken from AP-42 Tables 1.4-1 & 1.4-2

(4) Emission Factors for 2 SLB engine taken from AP-42 Table 3.2-1
(5) NOX, CO, VOC, CO2, and CH4 emission factors for Caterpillar Egens taken from Caterpillar Manufacturer data
(6) NOX, CO, WOC, CO2, and CH4 emission factors for Caterpillar Egens taken from Generac manufacturer statement of exhaust emissions for SCAQMD certification
(7) SO2, PMF, PMF-10, PMF-25, PMC, and N2O Emission factors for Caterpillar Egens taken from AP-42 Table 3.2-1 and converted using manufacturer fuel data
(8) SO2, PMF, PMF-10, PMF-25, PMC, and N2O Emission factors for Generac Egens taken from AP-42 for natural gas combustion
(9) Assume PMF=PMF-10=PMF-2.5

(10) CO2e emission rate calculated by multiplying each GHG (CO2, CH4, N2O) by its Global Warming Potential (GWP) and adding them together (11) CO2 GWP = 1; CH4 GWP = 25; N2O GWP = 298 [40 CFR 98]

<u>Table C-5 Hazardous Air Pollutant (HAP) Emissions From Combustion Sources</u> ACP Compressor Station 3 - Northampton County, North Carolina

Quantity @ ACP-3		1 1	AP Emissions (1	1	1	1 1
Pollutant	HAP?	40 Turbine	Solar Centaur 50L Turbine	Solar Taurus 70 Turbine	Boiler < 100 MMBtu	1300 KW Caterpillar Egen	100 kW Generac Ege
, chamit	1001	4700	8200	10915	5.25	1818	148.9
		hp	hP	hP	MMBTWhr	hp	hp
		9125	8500	7205			=:\===\/.
		Btw/hp-hr	8tu/hp-hr	Btw/hp-hr			
1,1,2,2-Tetrachioroethane	Yes					0.031	0.003
1,1,2-Trichloroethane	Yes					0.024	0.002
1,1-Dichloroethane	Yes					0.018	0.001
1,2,3-Trimethylbenzene	No		_			0.016	0.001
1,2,4-Trimethylbenzene	No					0.051	0.004
1,2-Dichloroethane	Yes			-		0.020	0.002
1,2-Dichloropropane	Yes					0.021	0.002
1,3,5-Trimethylbenzene	No					0.008	0.002
1,3-Butadiene	Yes			-	_	0.379	0.031
1,3-Dichloropropene	Yes	 				0.020	0.002
2,2,4-Trimethylpentane	Yes	 				0.391	0.002
2 Methylnaphthalene	No				0.001	0.010	
3-Methylchloranthrene	No			_	0.000	0,010	0.001
7,12-Dimethylbenz(a)anthracene	No				0.000		
Acenaphthene	No						
Acenaphthylene					0.000	0.001	0.000
Acetaldehyde	No				0.000	0.001	0.000
	Yes					3.590	0.294
Acrolein Anthracene	Yes	_				3.599	0.295
	No	-			0.000	0.000	0.000
Benz(a)anthracene	No	-			0.000	0.000	0.000
Benzene	Yes				0.095	0.897	0.073
Benzo(a)pyrena	No				0.000	0.000	0.000
Benzo(b)fluoranthene	No				0.000	0.000	0.000
Benzo(e)pyrene	No					0.000	0.000
Benzo(g,h,i)perylene	No				0.000	0.000	0.000
Benzo(k)fluoranthene	No				0.000	0.000	0.000
Biphenyl	Yes					0.002	0.000
Butane	No				94.685	2.197	0.180
Butyr/Isobutyraldehyde	No					0.202	0.017
Carbon Tetrachloride	Yes					0.028	0.002
Chlorobenzene	Yes					0.021	0.002
Chloroethane	Yes					0.027	0.002
Chloroform	Yes					0.0218	0.002
Chrysene	No			-	0.000	0.000	0.002
Cyclohexane	No				0.000	0.142	0.000
Cyclopentane	No			_		0.044	0.004
Dibenzo(a,h)anthracene	No				0.000	0.044	0.004
Dichlorobenzene	Yes		_		0.054		
thane	No				139,774	32,796	
Ethylbenzene	Yes				139.774		2.686
thylene Dibromide	Yes					0.050	0.004 0.003
Tuoranthene	No	-			0.000		
Tuorene	No				0.000	0.000	0.000
ormaldehyde		£44.000	664 770	000 000		0.001	0.000
demand (as a Marana)	Yes	541.000	664.779	992.029	3.382	25.534	2.091
decart 2.2 - Daniel			_		81.159	0.206	0.017
ndeno(1,2,3-c,d)pyrene	No				0.000	0.000	0.000
sobutane	No					1.735	0.142
Methanol	Yes					1.147	0.094
Methylcyclohexane	No					0.156	0.013
Methylene Chloride	Yes					0.068	0.008
-Nonane_	No					0.014	0.001
-Octane	No	\Box				0.034	0.003
laphthalene	Yes				0.028	0.045	0.004
PAH	Yes					0.062	0.005
Pentane (or n-Pentane)	No				117.229	0.708	0.058
Perylene	. No					0.000	0.000
henanthrene	No				0.001	0.002	0.000
henol	Yes					0.019	0.002
ropane	No				72.141	13.276	1.087
Propylene Oxide	Yes						.,,,,,,,
yrene	No			-	0.000	0.000	0.000
Styrene	Yes			-		0.025	0.002
etrachloroethane	No						
oluene	Yes	- 			0.153	0.445	0.036
finyl Chloride	Yes				5.155	0.011	0.001
ylene	Yes					0.011	0.001
vsenic	Yes				0.009	0.124	0.010
larium	No						
leryfium	Yes				0.198		
admium					0.001		
Chromium	Yes	-					
	Yes				0.063		
obalt	Yes				0.004		
opper	No			T	0.038		
langanese	Yes				0.017		
lercury	Yes				0.012		
lolybdenum	No				0.050		Ï
ickel	Yes				0.095		
elenium	Yes				0.001		
anadium	No		-		0.104		
inc	No				1.308		
					0.023		
ead	Yes						
ead otal HAPs	Yes	572 934	704.019	1050 588	0.023		
ead otal HAPs Total HAP/unit (lb/yr)	Yes	572.934 573	704.019 704	1050.586 1051	85.1	36.8	3.02

Hazardous Air Pollutant

Notes:
(1) Emissions above are on a per unit basis
(2) Calculations for the Caterpillar emergency generator assume 100 hours of operation, all other calculations assume 8,760 hours of operation
(3) Heat rates for Solar Turbnes taken from Solar Datasheets
(4) Solar turbines have a 50% HAP control efficiency due to the Oxidation Catalyst

<u>Table C-6 Combustion Source HAP Emission Factors</u> ACP Compressor Station 3 - Northampton County, North Carolina

				Emission F	actors	7457	1
Pollutant	HAP?	Solar Centaur 40 Turbine	Solar Centaur 50L Turbine	Solar Taurus 70 Turbine	Boiler < 100 MMBtu	1300 KW Caterpillar Egen	100 kW Generac Egen
4.4.2.2 Teleschiereches	V	Ib/MM8tu	Ib/MMBtu	1b/MMBtu	lb/MMscf	lb/hp-hr	lb/hp-hr
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	Yes Yes	+			-	1.7E-07	1.7E-0
1,1-Dichloroethane	Yes					1.3E-07 9.9E-08	1.3E-0
1,2,3-Trimethylbenzene	No			_		9.0E-08	9.0E-0
1,2,4-Trimethylbenzene	No	+				2.8E-07	2.8E-0
1,2-Dichloroethane	Yes					1.1E-07	1.1E-0
1,2-Dichloropropane	Yes	1				1.1E-07	1.1E-0
1.3.5-Trimethylbenzene	No					4.6E-08	4.6E-08
1,3-Butadiene	Yes					2.1E-06	2.1E-06
1,3-Dichloropropene	Yes					1.1E-07	1.1E-0
2,2,4-Trimethylpentane	Yes					2.2E-06 5.4E-08	2.2E-06 5.4E-06
2-Methylnaphthalene	No				2.4E-05	5.4E-08	5.4E-0
3-Methylchioranthrene	No	-			1.8E-06		
7,12-Dimethylbenz(a)anthracene	No No				1.6E-05 1.8E-06		
Acenaphthene Acenaphthylene	No No				1.8E-06	3.4E-09	3.4E-09
Acetaldehyde	Yes	_			1.05-00	8.1E-09 2.0E-05	8.1E-09
Acrolein	Yes					2.0E-05	2.0E-0
Anthracene	No	1			2.4F-06	1.8E-09	1.8F-0
Benz(a)anthracene	No				2.4E-06 1.8E-06	8.5E-10	1.8E-09 8.5E-10
Benzene	Yes				2.1E-03	4.9E-06	4.9E-0
Benzo(a)pyrene	No	1			1.2E-06	1.4E-11	1.4E-1
Benzo(b)fluoranthene	No.				1.2E-06 1.8E-06	2.2E-11	2.2E-1
Benzo(e)pyrene	No					6.0E-11	6.0E-1
Benzo(g,h,i)perylene	No.				1.2E-06	6.3E-11	6.3E-11
Benzo(k)fluoranthene	No				1.8Ē-06	1.1E-11	1.1E-11
Biphenyl	Yes					1.0E-08	1.0E-08
Butane	No	-			2.1E+00	1.2E-05	1.2E-05
Butyr/Isobutyraldehyde	No				7.0	1.1E-06	1.1E-06
Carbon Tetrachloride	Yes					1.5E-07	1.5E-07
Chlorobenzene Chloroethane	Yes Yes	-				1.1È-07	1.1E-07
Chloroform	Yes					1 2E 07	1 25 02
Chrysene	No	-			1.8E-06	1.2E-07 1.7E-09	1.2E-07 1.7E-09
Cyclohexane	No				1,02-00	7.8E-07	7.8E-07
Cyclopentane	No					2.4E-07	2.4E-07
Dibenzo(a,h)anthracene	No				1.2E-06		2.10.01
Dichlorobenzene	Yes				1,2E-03		
Ethane	No				3.1E+00	1.8E-04	1.8E-04
Ethylbenzene	Yes					2.7E-07	2.7E-07
Ethylene Dibromide	Yes					1.9E-07	1.9E-07
Fluoranthene	No	ļ			3.0E-06	9.2E-10	9.2E-10
Fluorene	No				2 8E-06	4.3E-09	4.3E-09
Formaldehyde	Yes	2.9E-03	2.9E-03	2 9E-03	7.5E-02	1.4E-04	1.4E-04
Hexane (or n-Hexane)	Yes				1.8E+00	1.1E-06	1.1E-06
indeno(1,2,3-c,d)pyrene Isobutane	No	+			1 8E-06	2.5E-11	2.5E-11
Methanol	Yes					9.5E-06 6.3E-06	9.5E-06 6.3E-06
Methylcyclohexane	No					8,6E-07	8.6E-07
Methylene Chloride	Yes					3.7E-07	3.7E-07
n-Nonane	No					7.8E-08	7.8E-08
n-Octane	No					1.9E-07	1.9E-07
Naphthalene	Yes				6 1E-04	2.5E-07	2.5E-07
PAH	Yes					3.4E-07	2.5E-07 3.4E-07
Pentane (or n-Pentane)	No				2.6E+00	3.9E-06	3.9E-06
Perylene	No					1.3E-11	1.3E-11
Phenanthrene	No				1.7E-05	9.0E-09	9.0E-09
Phenol	Yes					1.1E-07	1.1E-07
Propane	No				1.6E+00	7.3E-05	7.3E-05
Propylene Oxide	Yes	-				4.55.00	4.55.00
Pyrene	No Yes				5.0E-06	1.5E-09	1.5E-09
Styrene February Tetrachloroethane	Yes No					1.4E-07	1.4E-07
Toluene					3.45.00	2 65 00	255.65
Vinyl Chloride+A32	Yes				3.4E-03	2.5E-06 6.3E-08	2.5E-06
Villene Kylene	Yes					6.8E-07	6.8E-07
Arsenic	Yes				2.0E-04	0.02-07	0.02-07
Barium	No	1			4.4E-03		1
Bervilium	Yes				1.2E-05		1
Cadmium	Yes	 	-		1.1E-03		f
Chromium	Yes				1.4E-03		f
Cobalt	Yes				8.4E-05		1
Copper	No				8.5E-04		1
Manganese	Yes				3.8E-04		1
Mercury	Yes		i		2.6E-04		1
Molybdenum	No				1.1E-03		1
lickel	Yes				2.1Ē-03]
Selenium	Yes				2.4E-05]
/anadium	No				2.3E-03]
Zinc	No				2.9E-02]
.ead	Yes				5.0E-04		l
Total HAPs		3.1E-03	3.1E-03	3.1E-03			

Hazardous Air Pollutant

- Notes
 (1) Emission factors for Solar and Capstone natural gas turbines from AP-42 Table 3 1-3
 (2) Emission factors for natural gas boilers from AP-42 Tables 1 4-2, 1 4-3, and 1.4-4
 (3) Emission factors for 12 SLB natural gas engines and Caterpillar and Generac natural gas emergency generators taken from AP-42 Table 3 2-1
 (4) Emission factors for 50 In attural gas turbines and Caterpillar and Generac natural gas emergency generators taken from AP-42 Table 3 2-1
 (4) Emission factors (10 Indian natural gas turbines and Caterpillar and Generac natural gas emergency generators converted using 1 KWh = 3412 Btu and 1 kw = 1 341 hp
 (5) Emission Factors (10 Indian Habra) for Formaldehyde and Total HAPs for Solar Turbines from Solar Pit. 168

Table C-7 Potential Emissions From Fugitive Leaks ACP Compressor Station 3 - Northampton County, North Carolina

Fugitive Emissions (FUG)

Source Designation:

Operational Parameters; Annual Hours of Operation (hr/yr):

Service Compressor Fugitive Emissions Rate Equipment 1. Default methane basis and emission factor taken from Table 6-6 of Compredium of Greenhouse Cas Emissions Methodolopgies for the Oil and Cas Industry, API, August 2009, 2. Sample calculations: Hours of operation (htt/yr)* EPI (ton / compressor-lay / Methane Fraction

Pipeline Natural Gas Fugitive Emissions

Equipment	Service	Emission Factor ^[1]	2000	Total HC Potes	Total HC Potential Emissions	VOC Weight	VOC Emissions	CO ₂ Weight	CO, Emissions	CH, Weight	Cff, Emissions	HAP Weight	HAP Emissions
		lb/ln/source	Source Country	lb/hr	tpy	Fraction	tpy	Fraction	ydi	Fraction	tov	Fraction	Adq
Valves	Cas	4.50E-03	91-9	2.91	12.7	97070	0.334	0.0271	0.345	0.895	11.4	1,485-03	1.88E-02
Pump Scals	Gas	2.405-03	San Marie Con	0.00	0.00	0.026	000	1,72010	0.00	0.895	00:00	1,485-03	0.00E+00
Others (compressors and others)	Gas	8.80E-03	3	0.03	0.12	9700	0.00	0.0271	0:00	0.895	0.10	1.485-03	1.715-04
Connectors	Gas	2.00E-04	1	2.00E-04	8.76E-04	0.026	2.30E-05	0.0271	2.38E-05	0.895	7.84E-04	1,485-03	1.30E-06
Hanges	Gas	3,905-04	340	0.133	0.581	9700	0.015	0.0271	0.016	0.895	0.520	1.485-03	8.59E-04
Open-ended lines	Gas	2.00E-03	Real Property	0.00	0.00	97070	000	0.0271	0.00	0.895	000	1,485-03	0.00E+00
			Total	6	13		0.4	.0	0.4	()	12 015		200

1. EPA Protocol for Equipment Leaks Emissions Estimate (EPA-45)/R 95-017, Table 2-4: Oil and Cas Production Operations Emission Factors.

2. Component count based on Basic Systems Engineering Estimate.

Setting Calculations (by htt) = Emission Factor (by htt/source) *Source Count Potential Emissions (torst/yr) = (by hth/source) *Source Count Potential Emissions (torst/yr) = (by hth/source) * (by hth/source) *

Table C-8 Tank Emissions

ACP Compressor Station 3 - Northampton County, North Carolina

TK-1, TK-2, TK-3
Source Designation:

Tank Parameters

	Capacity Throughput Tank Diam.	ım. Tank Length	Daint Colon	Paint
Horizontal, fixed Produced Fluids 1,000 5,000 Fluids Lube Oil 2,500 12,500		ff	railit Coloi	Condition
Horizontal, fixed Lube Oil 2,500 12,500	5,000	10	Light Grey	Cood
	2,500 12,500 4.61	20	Light Grey	Cood

Total Emissions

				VOC Emissions	ons			
Source	Flashing Losses	g Losses	Working Losses	Losses	Breathing Losses	r Losses	Total Losses	cosses
	lb/hr	tpy	lb/hr	tpy	1b/hr	tpy	1b/hr	tpy
TK-1 ^[1]	ı		-	1	1	-	0.033	0.145
$TK-2^{[2]}$	NA	NA	1.29E-06	5.65E-06	3.72E-06	1.63E-05	5.01E-06	2.19E-05

^{1.} Losses were calculated for TK-1 using E&P Tanks Software. See attached for output.

^{2.} Losses were calculated for TK-2 using EPA's TANKS 4.09d software with default breather vent settings.

^{3.} Losses (Emissions) from TK-3 13,400-gallon Ammonia tank assumed to be insignficant.

<u>Table C-9 Project Potential Emissions</u> ACP Compressor Station 3 - Northampton County, North Carolina

				Ö	Criteria Pollutants (tpy	tants (tpy					GHG Emis	GHG Emissions (tpv)		Ammonia (tpv)	HAP (tov)
Combustion Sources	Ω	NOx	CO	NOC	802	PMF	PMF-10	PMF-2.5	PMC	C02	CH4	NZO	CO2e	NH3	Total HAP
Solar Taurus 70 Turbine	CT-01	8.35	13.1	0.775	1.43	2.42	2.42	2.42	5.99	50,035	4.00	1.26	50.511	5.77	0.525
Solar Centaur 50L Turbine	CT-02	5.20	8.19	0.477	0.894	1.51	1.51	1.51	3.74	31,329	2.50	0.788	31,627	3.58	0.352
Solar Centaur 40 Turbine	CT-03	4.44	7.29	0.405	0.760	1.29	1.29	1.29	3.18	26,747	2.14	0.671	27,000	3.02	0.286
Caterpillar G3516B Egen	EG-01	0.100	0.499	0.108	3.88E-04	0.025	0.025	0.025	0.007	101	0.859	0	122	0	0.018
Generac SG100 Egen	EG-02	4.92E-05	0.001	0.003	3.18E-05	0.002	0.002	0.002	0.001	759	0.015	0	759	0	0.002
Boiler	WH-01	1.13	1.89	0.124	0.014	0.043	0.043	0.043	0.129	2,705	0.052	0.050	2,721	0	0.043
Fugitive Leaks - Blowdowns	FUG-01	-		18.8			,			19.5	643		16,092	,	1.06
Fugitive Leaks - Piping	FUG-02	-	1	0.352		,		,		0.4	12	'	301		0.02
Pipeline Liquids Tank	TK-1	,	,	0.145			,			 -			-	,	
Hydrocarbon (Waste Oil) Tank	TK-2	•		2.19E-05	1					,		,			1
Total (tons/yr)		19.2	31.0	21.2	3.10	6.29	5.29	5.29	13.1	111,696	664	2.77	129.133	12.4	2.31

Tank 1 Emissions.txt

```
*********************
     Project Setup Information
***********************
****
Project File
                       : M:\0345197 DRS ATL Coast Pipe.PR\T501 Air Permit\ACP &
SHP-Permitting\Air Permitting Round 2\Round 5\ACP-1 - Marts\Aug 2016 - EG and Tank
Replacements\TK-1 - 05152017 Update to Throughput.ept
Flowsheet Selection
                      : Oil Tank with Separator
Calculation Method
                       : AP42
                       : 100.0%
: Low Pressure Gas
Control Efficiency
Known Separator Stream
Entering Air Composition : No
Date
                       : 2017.06.05
********
    Data Input
                      : 552.00[psig]
: 77.00[F]
: 0.0500
Separator Pressure
Separator Temperature
Molar GOR
Ambient Pressure
                       : 14.70[psia]
                      : 70.00[F]
Ambient Temperature
                       : 0.8990
C10+ SG
C10+ MW
                       : 166.00
-- Low Pressure Gas
                           mol %
  No.
        Component
                            0.0000
  1
        H2S
  2
                            0.0000
0.5112
        02
  3
        C02
  4
        N2
                            0.5295
  5
                           94.0604
        C1
  6
        C2
                            4.7199
        C3
                            0.1590
  8
        i-C4
                            0.0099
        n-C4
                            0.0099
  10
        i-C5
                            0.0000
                            0.0000
  11
        n-C5
  12
        C6
                            0.0000
                            0.0000
  13
        C7+
  14
        Benzene
                            0.0000
  15
        Toluene
                            0.0000
  16
        E-Benzene
                            0.0000
  17
        Xylenes
                            0.0000
        n-C6
224Trimethylp
  18
                            0.0000
  19
                            0.0000
  C7+ Molar Ratio: C7 :
                          c8 :
                                            C10+
                 1.0000
                          1.0000
                                   1,0000
                                            1.0000
-- Sales Oil
                     : 0.3[bb1/day]
Production Rate
```

Page 1

```
Tank 1 Emissions.txt
Days of Annual Operation : 365 [days/year]
API Gravity : 46.0
Reid Vapor Pressure : 7.70[psia]
Bulk Temperature
                             : 80.00[F]
-- Tank and Shell Data
Diameter : 4.12[ft]
Shell Height : 10.00[ft]
Cone Roof Slope : 0.06
Average Liquid Height : 5.00[ft]
Vent Pressure Range : 0.06[psi]
Solar Absorbance : 0.54
-- Meteorological Data
------
City : Charleston, WV
Ambient Pressure : 14.70[psia]
Ambient Temperature : 70.00[F]
Min Ambient Temperature : 44.00[F]
Max Ambient Temperature : 65.50[F]
Total Solar Insolation : 1123.00[Btu/ft^2*day]
*****************
    Calculation Results
*****************
-- Emission Summary
                    Uncontrolled Uncontrolled
                      [ton/yr] [lb/hr]
Total HAPs
Total HC
                      0.000
                                        0.000
                       0.174
                                       0.040
                      0.157
VOCs, C2+
                                        0.036
VOCs, C3+
                       0.145
                                        0.033
Uncontrolled Recovery Info.
                       8.5700 x1E-3
                                         [MSCFD]
                       8.0800 x1E-3
        HC Vapor
                                         [MSCFD]
                       26.29
                                         [SCF/bbl]
-- Emission Composition
No Component
                       Uncontrolled Uncontrolled
                      [ton/yr]
0.001
                                       [lb/hr]
0.000
   H2S
1234567
    02
                       0.000
                                        0.000
    C02
                       0.009
                                        0.002
    N2
                       0.000
                                        0.000
    C1
                       0.017
                                        0.004
    C2
                                        0.003
                       0.013
    C3
                       0.032
                                        0.007
8
    i-c4
                       0.013
                                        0.003
9
                                        0.010
   n-c4
                       0.042
   i-C5
10
                       0.017
                                        0.004
11 n-C5
                       0.020
```

Page 2

0.005

12 C6 13 C7 14 C8 15 C9 16 C10+ 17 Benzene 18 Toluene 19 E-Benzene 20 Xylenes 21 n-C6 22 224Trimethylp	0.006 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Tank 1 Emis 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.042	sions.txt			
Stream Data						
No. Component Total Emissions	MW	LP Oil	Flash Oil	Sale Oil	Flash Gas	W&S Gas
mol %		mol %	mol %	mol %	mol %	mol %
1 H2S 0.5435	34.80	0.0508	0.0349	0.0010	0.6834	0.0657
2 O2 0.0000	32.00	0.0000	0.0000	0.0000	0.0000	0.0000
3 CO2 4.9092	44.01	0.2437	0.0907	0.0000	6.3467	0.0001
4 N2 0.3087	28.01	0.0102	0.0005	0.0000	0.3990	0.0001
5 C1 25.6311	16.04	0.9543	0.1475	0.0000	33.1362	0.0001
6 C2 10.2979	30.07	0.6701	0.3531	0.0000	13.3133	0.0001
7 C3 17.4378	44.10	2.1827	1.7648	0.3098	18.8508	12.6125
8 i-C4 5.5165	58.12	1.1269	1.0450	0.5408	4.3934	9.3522
9 n-C4 17.4797	58.12	4.6091	4.4100	2.8709	12.5490	34.3185
10 i-C5 5.5621	72.15	3.1066	3.0997	2.7402	3.3810	13.0110
11 n-C5 6.8196	72.15	5.0558	5.0823	4.7421	4.0000	16.4491
12 C6 1.8355	86.16	4.1726	4.2520	4.3903	1.0044	4.6741
1.8355 13 C7 1.5853	100.20	10.3655	10.6043	11.2777	0.8388	4.1346
Page 2					E&	P TANK
14 C8 0.5426	114.23	10.8426	11.1074	11.9365	0.2806	1.4375
15 C9	128.28	5.5127	5.6497	6.0913	0.0497	0.2624
0.0979 16 C10+	166.00	45.9695	47.1217	50.8962	0.0099	0.0544
0.0200 17 Benzene	78.11	0.5685	0.5808	0.6114	0.0778	0.3692
0.1438 18 Toluene	92.13	0.2132	0.2183	0.2341	0.0082	0.0407
0.0155 19 E-Benzene	106.17	0.0711	0.0729	0.0785	0.0009	0.0046
0.0017 20 Xylenes	106.17	0.6802	0.6971	0.7513	0.0075	0.0387
0.0146 21 n-C6	86.18	3.5939	3.6672	3.8242	0.6694	3.1745
1.2368		Pago	2			

Page 3

22 224Trimethylp 0.0000	Ta 114.24	nk 1 Emiss 0.0000	ions.txt 0.0000	0.0000	0.0000	0.0000
MW 44.68 Stream Mole Ratio 0.0316		123.89 1.0000	126.03 0.9755	130.08 0.9684	38.64 0.0245	65.28 0.0072
Heating Value 2402.74	[BTU/SCF]				2044.13	3627.44
Gas Gravity	[Gas/Air]				1.33	2.25
Bubble Pt. @ 100F	[psia]	56.28	19.66	5.57		
RVP @ 100F	[psia]	126.75	78.89	35.25		
Spec. Gravity @ 100F		0.800	0.803	0.811		

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification
User Identification:
City:
State:
Company:
Type of Tank:
Description:

West Virginia

TK-2

Horizontal Tank Used Oil Aboveground Storage Tank

Tank Dimensions
Shell Length (ft):
Diameter (ft):
Volume (gallons):
Tumovers:
Net Throughput(gal/yr):
Is Tank Heated (y/n):
Is Tank Underground (y/n): 20.00 4.61 2,500.00 5.00 12,500.00

Paint Characteristics Shell Color/Shade: Shell Condition Gray/Light Good

Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig) -0.03 0.03

Meterological Data used in Emissions Calculations: Charleston, West Virginia (Avg Atmospheric Pressure = 14.25 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

TK-2 - Horizontal Tank

			ily Liquid Si perature (di		Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mai	Basis for Vacor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max	Weight.	Fract.	Fract.	Weight	Calculations
Used Oil	All	61.57	52.97	70.18	57.22	0.0001	0.0001	0 0001	380 0000			200.00	Option 1 VP60 = 0001 VP70 = 0001

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

TK-2 - Horizontal Tank

Annual Emission Calcaulations	
Standing Losses (ib):	0.0326
Vapor Space Volume (cu ft):	212.8288
Vapor Density (lb/cu ft):	0.0000
Vapor Space Expansion Factor:	0.0618
Vented Vapor Saturation Factor	1.0000
vented vapor Saturation Factor	1.0000
Tank Vapor Space Volume:	0.40.0000
Vapor Space Volume (cu ft):	212 6288
Tank Diameter (ft):	4.6100
Effective Diameter (R):	10.8375
Vapor Space Outage (ft):	2.3050
Tank Shell Length (ft):	20.0000
Vapor Density	
Vapor Density (lb/cu ft):	0 0000
Vapor Molecular Weight (lb/lb-mole):	380.0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0 0001
Daily Avg. Liquid Surface Temp. (deg. R)	521.2427
Daily Average Ambient Temp. (deg. F):	54.9833
ideal Gas Constant R	
(psia cuft / (lb-mol-deg R));	10.731
Liquid Bulk Temperature (deg. R):	516 8933
Tank Paint Solar Absorptance (Shell):	0 5400
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,250 5726
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.0618
Daily Vapor Temperature Range (deg. R):	34.4127
Daily Vapor Pressure Range (psia):	0.0000
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0.0001
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	0.0001
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	0.0001
Daily Avg. Liquid Surface Temp. (deg R):	521.2427
Daily Min. Liquid Surface Temp. (deg R):	512.6395
Daily Max. Liquid Surface Temp. (deg R):	529.8458
Daily Ambient Temp. Range (deg. R):	21.5333
Vented Vacor Saturation Factor	
Vented Vapor Saturation Factor	1.0000
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	0.0001
Vapor Space Outage (ft):	2 3050
Working Losses (lb):	0.0113
Vapor Molecular Weight (lb/lb-mole):	380 0000
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	0 0001
Annual Net Throughput (gal/yr):	12,500.0000
Annual Turnovers:	5.0000
Turnover Factor:	1,0000
Tank Diameter (ft):	4.6100
Working Loss Product Factor	1.0000
Total Losses (lb):	0.0439

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

TK-2 - Horizontal Tank

		Losses(lbs)	
Components	Working Loss	Breathing Loss	Total Emissions
Used Oil	0.01	0.03	0.04

ATTACHMENT D

VENDOR SPECIFICATIONS

Solar Turbines Emissions Estimates
Taurus 70-10802S
Assumptions: pipeline natural gas, sea level, 4"/4" inlet/outlet losses, nominal performance

20% load	District Con-				0.00000180	000			San Calleton	- IN CO. IN CO.	- TO THE R. P. LEWIS CO., LANSING, MICH.				1	Cash Control (Section)
		fuel flow,	Thermal	NOX	NOX	03	03	OHC	OHC	700	700	C02	PM10/2.5	PM10/2.5 PM10/2.5	Exhaust	Exhaust Exhaust Flow
Temp, F	표	mmbtu/hr LHV	Eff, %	(ppm)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	1b/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	5941	63.54	23.79	6	2.3	25	3.9	25	2.2	2.5	0.2	8321	0.02	1.4	910	199,373
29	5430	56.92	24.27	6	2.0	25	3.4	25	2.0	2.5	0.2	7407	0.02	1.3	991	170,275
100	4341	49.58	22.28	6	1.7	25	3.0	25	1.7	2.5	0.2	6336	0.02	The second	1045	149576
75% load						100 TO 10			No. of Page		100		-			
		fuel flow,	Thermai	NOX	NOX	8	8	OHO	UHC	VOC	VOC	CO2	PM10/2.5	PM10/2 5	Exhaust	Exhaust Flow
Temp, F	Η	mmbtu/hr LHV	Eff, %	(mdd)	(Ib/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	lb/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	8912	76.91	29.49	6	2.8	25	4.7	25	2.7	2.5	0.3	10063	0.02	1.7	868	224.735
29	8145	68.47	30.27	6	2.5	25	4.2	25	2.4	2.5	0.2	8905	0.02	1.5	957	194,658
100	6512	59.08	28.05	6	2.1	25	3.5	25	2.0	2.5	0.2	7544	0.02	1.3	1019	165855
100% load				- 100 M	100	The second	The state of								Manage and A	
		fire I file.	The same of	0.1	0.1	00	00									i
Temp, F	유	mmbtu/hr LHV	Eff, %	(mdd)	(lb/hr)	3 (mag	(lb/hr)	(mad	(lb/hr)	C (mag	D (A)	505 19/hr	PM10/2.5 [b/mmbtu	PM10/2.5	Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	11882	87.27	34.64	6	3.2	25	5.3	25	3.1	2.5	0.3	11411	0.02	1.9	864	366,922
59	10860	79.24	34.87	6	2.8	25	4.8	25	2.8	2.5	0.3	10301	0.02	1.7	908	334,207
100	8683	68.40	32.30	6	2.4	25	4.1	25	2.3	2.5	0.2	8730	0.02	1.5	945	298619

Solar Turbines Emissions Estimates
Centaur 50-6200LS
Assumptions: pipeline natural gas, 150' elevation, 5"/8" inlet/outlet losses, nominal performance

20% load								The second second				The same of	100 Sept. 100 Se			0.000
Temp, F	롸	fuel flow, mmbtu/hr LHV	Thermal Eff, %	XON (mdd)	NOx (lb/hr)	CO (bbm)	CO (lb/hr)	(bbm)	UHC (lb/hr)	VOC (ppm)	VOC (lb/hr)	CO2 Ib/hr	PM10/2.5 Ib/mmbtu	PM10/2.5 Ib/hr	Exhaust Temp (F)	Exhaust Flow (lb/hr)
0	3321	39.27	21.54	6	1.4	25	2.4	25	1.4	2.5	0.1	5155	0.02	6.0	837	139.384
29	3006	35.20	21.73	6	1.3	25	2.1	25	1.2	2.5	0.1	4591	0.02	0.8	915	119.683
100	2426	30.76	20.06	6	1.1	25	1.8	25	1.0	2.5	0.1	3938	0.02	0.7	996	103305
75% load	00000 m						STATE OF THE PARTY		THE PERSON		SOUTH STATES				The second second	
1		fuel flow,	Thermal	NOX	NOX	00	8	ЭНП	OHC	voc	VOC	200	PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
remp, r	È	mmbtu/hr LHV	Eff, %	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(llþ/hr)	lb/hr	lb/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	4981	47.21	26.85	6	1.7	25	2.9	25	1.6	2.5	0.2	6189	0.02	1.0	849	152,889
29	4509	42.05	27.29	6	1.5	25	2.5	25	1.5	2.5	0.2	5479	0.02	6.0	806	133,124
100	3639	36.70	25.23	6	1.3	25	2.2	25	1.2	2.5	1.0	4695	0.02	8.0	959	115664
100% load						18 CS							Section Section		No. of Party of the last	
		fuel flow.	Thermal	XON	×ON	9	00	CHI	CHIL	SON	SON	600	PM10/2 5	PM40/2 5	Exhallet	Exhaust Flow
Temp, F	НР	mmbtu/hr LHV	Eff, %	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	lb/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	6642	54.55	30.98	6	2.0	25	3.3	25	1.9	2.5	0.2	7145	0.02	1.2	871	161,184
29	6012	50.72	30.16	6	1.8	25	3.1	25	1.7	2.5	0.2	6603	0.02	1.1	926	144,840
100	4852	44.43	27.78	6	1.6	25	2.6	25	1.5	2.5	0.5	6299	0.02	1.0	1004	127484

Solar Turbines Emissions Estimates
Centaur 40-4700S
Assumptions: pipeline natural gas, sea level, 4"/4" inlet/outlet losses, nominal performance
50% load

50% load	1000												The state of the last			The second second
		fuel flow,	Thermal	NOX	NOX	03	03	OHIC	OHC	VOC VOC	700	C02	PM10/2.51	PM10/2.5	Exhaust	Exhaust Flow
Temp, F	표	mmbtu/hr LHV	Eff, %	(mdd)	(Ib/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)		1b/mmbtu	lb/hr	Temp (F)	(Ib/hr)
0	2511	32.29	19.78	25	3.2	20	3.9	25		2.5	0	4259	0.02	0.7	728	140 550
59	2278	29.85	19.41	25	3.0	20	3.6	25	10	2.5	-	3911	0.00	200	818	122 244
100	1735	26.09	16.92	25	2.6	20	3.1	25	6.0	2.5	-	3355	200	9	878	106080
75% load	The state of the s											2000	70.0	200		2000
								1					-	10000000		
		fuel flow,	Thermal	NOX	NOX	8	8	UHC	UHC	VOC	Noc	200	PM10/2 5	PM410/2 5	Exhanet	Exhanet Flow
Temp, F	НР	mmbtu/hr LHV	Eff, %	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	Ib/mmptu	15/hr	Temp (F)	(lb/hr)
0	3767	39.31	24.39	25	3.9	20	4.8	25	14	2.5	0	5177	0.02	0.0	736	156 668
59	3417	35.41	24.55	25	3.5	20	4.3	25	12	2.5	5	4635	000	80	840	136 464
100	2602	30.78	21.51	25	3.0	20	3.7	25	10	25	-	3055	200	0.7	873	117366
100% load												2000	20:0			000
												The same of				
		fuel flow,	Thermal	NOX	NOX	8	8	OHC	HC	70C	VOC	C02	PM10/2.5	PM10/2.5	Exhaust	Exhaust Flow
Temp, F	H	mmbtu/hr LHV	Eff, %	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	(mdd)	(lb/hr)	lb/hr	lb/mmbtu	lb/hr	Temp (F)	(lb/hr)
0	5023	46.39	30.23	25	4.7	20	5.7	25	1.6	2.5	0.2	6100	0.02	10	622	164 995
59	4556	42.27	29.51	25	4.2	20	5.1	25	1.5	2.5	0.2	5526	0.02	6.0	840	148 793
100	3470	35.07	27.45	25	3.4	20	4.2	25	1.2	2.5	0.1	4503	0.02	0.8	873	127331
														-		

SoLoNOx Products: Emissions in Non-SoLoNOx Modes

Leslie Witherspoon

Solar Turbines Incorporated

PURPOSE

Solar's gas turbine dry low NOx emissions combustion systems, known as $SoLoNOx^{TM}$, have been developed to provide the lowest emissions possible during normal operating conditions. In order to optimize the performance of the turbine, the combustion and fuel systems are designed to reduce NOx, CO and unburned hydrocarbons (UHC) without penalizing stability or transient capabilities. At very low load and cold temperature extremes, the SoLoNOx system must be controlled differently in order to assure stable operation. The required adjustments to the turbine controls at these conditions cause emissions to increase.

The purpose of this Product Information Letter is to provide emissions estimates, and in some cases warrantable emissions for NOx, CO and UHC, at off-design conditions.

Historically, regulatory agencies have not required a specific emissions level to be met at low load or cold ambient operating conditions, but have asked what emissions levels are expected. The expected values are necessary to appropriately estimate emissions for annual emissions inventory purposes and for New Source Review applicability determinations and permitting.

COLD AMBIENT EMISSIONS ESTIMATES

Solar's standard temperature range warranty for gas turbines with SoLoNOx combustion is ≥ 0 °F (-20°C). The $Titan^{TM}$ 250 is an exception, with a lower standard warranty at ≥ -20 °F (-29°C). At ambient temperatures below 0°F, many of Solar's turbine engine models are controlled to increase pilot fuel to improve flame stability and emissions are higher. Without the increase in pilot fuel at temperatures below 0°F the engines may exhibit combustor rumble, as operation may be near the lean stability limit.

If a cold ambient emissions warranty is requested, a new production turbine configured with the latest combustion hardware is required. For most models this refers to the inclusion of Cold Ambient Fuel Control Logic.

Emissions warranties are not offered for ambient temperatures below -20°F (-29°C). In addition, cold ambient emissions warranties cannot be offered for the *Centaur*® 40 turbine.

Table 1 provides expected and warrantable (upon Solar's documented approval) emissions levels for Solar's SoLoNOx combustion turbines. All emissions levels are in ppm at 15% O_2 . Refer to Product Information Letter 205 for $Mercury^{TM}$ 50 turbine emissions estimates.

For information on the availability and approvals for cold ambient temperature emissions warranties, please contact Solar's sales representatives.

Table 2 summarizes "expected" emissions levels for ambient temperatures below 0°F (-20°C) for Solar's SoLoNOx turbines that do not have current production hardware or for new production hardware that is not equipped with the cold ambient fuel control logic. The emissions levels are extrapolated from San Diego factory tests and may vary at extreme temperatures and as a result of variations in other parameters, such as fuel composition, fuel quality, etc.

For more conservative NOx emissions estimate for new equipment, customers can refer to the New Source Performance Standard (NSPS) 40CFR60, subpart KKKK, where the allowable NOx emissions level for ambient temperatures < 0°F (–20°F) is 150 ppm NOx at 15% O_2 . For pre-February 18, 2005, SoLoNOx combustion turbines subject to 40CFR60 subpart GG, a conservative estimate is the appropriate subpart GG emissions level. Subpart GG levels range from 150 to 214 ppm NOx at 15% O_2 depending on the turbine model.

Table 3 summarizes emissions levels for ambient temperatures below –20°F (–29°C) for the *Titan* 250.

Table 1. Warrantable Emissions Between 0°F and -20°F (-20° to -29°C) for New Production

Turbine Model	Fuel System	Fuel	Applicable Load	NOx, ppm	CO,	UHC, ppm
Centaur 50	Gas Only	Gas	50 to 100% load	42	100	50
Oernaar 50	Dual Fuel	Gas	50 to 100% load	72	100	50
Taurus™ 60	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Taurus 65	Gas Only	Gas	50 to 100% load	42	100	50
Taurus 70	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Mars® 90	Gas Only	Gas	50 to 100% load	42	100	50
Mars 100	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Titan 130	Gas Only or Dual Fuel	Gas	50 to 100% load	42	100	50
Titan 250	Gas Only	Gas	40 to 100% load	25	50	25
Titali 250	Gas Only	Gas	40 to 100% load	15	25	25
Centaur 50	Dual Fuel	Liquid	65 to 100% load	120	150	75
Taurus 60	Dual Fuel	Liquid	65 to 100% load	120	150	75
Taurus 70	Dual Fuel	Liquid	65 to 100% load	120	150	75
Mars 100	Dual Fuel	Liquid	65 to 100% load	120	150	75
Titan 130	Dual Fuel	Liquid	65 to 100% load	120	150	75

Turbine UHC, **Applicable** NOx, CO, **Fuel System** Fuel Model Load ppm ppm ppm Centaur 40 Gas Only or Dual Fuel Gas 80 to 100% load 120 150 50 Gas Only 50 to 100% load Gas 120 150 50 Centaur 50 **Dual Fuel** Gas 50 to 100% load 120 150 50 Taurus 60 Gas Only or Dual Fuel 50 to 100% load 120 150 50 Gas Taurus 65 Gas Only Gas 50 to 100% load 120 150 50 Taurus 70 Gas Only or Dual Fuel Gas 50 to 100% load 120 150 50 Mars 90 Gas Only Gas 80 to 100% load 120 150 50 Mars 100 Gas 120 150 50 Gas Only or Dual Fuel 50 to 100% load Titan 130 120 150 Gas Only or Dual Fuel Gas 50 50 to 100% load Centaur 40 **Dual Fuel** Liquid 80 to 100% load 120 150 75 Centaur 50 **Dual Fuel** Liquid 65 to 100% load 120 150 75 Taurus 60 **Dual Fuel** Liquid 65 to 100% load 120 150 75 Liquid Taurus 70 **Dual Fuel** 65 to 100% load 120 150 75 Mars 100 Dual Fuel Liquid 65 to 100% load 120 150 75 Titan 130 **Dual Fuel** Liquid 65 to 100% load 120 150 75

Table 2. Expected Emissions below 0°F (-20°C) for SoLoNOx Combustion Turbines

Table 3. Expected Emissions below –20°F (–29°C) for the Titan 250 SoLoNOx Combustion Turbine

Turbine Model	Fuel System	Fuel	Applicable Load	NOx, ppm	CO, ppm	UHC, ppm
Titan 250	Gas Only	Gas	40 to 100% load	70	150	50

COLD AMBIENT PERMITTING STRATEGY

There are several permitting options to consider when permitting in cold ambient climates. Customers can use a tiered permitting approach or choose to permit a single emission rate over all temperatures. Historically, most construction and operating permits were silent on the ambient temperature boundaries for *SoLoNOx* operation.

Some customers have used a tiered permitting strategy. For purposes of compliance and annual emissions inventories, a digital thermometer is installed to record ambient temperature. The amount of time is recorded that the ambient temperature falls below 0°F. The amount of time below 0°F is then used with the emissions estimates shown in Tables 1 and 2 to estimate "actual" emissions during sub-zero operation.

A conservative alternative to using the NOx values in Tables 1, 2 and 3 is to reference 40CFR60 subpart KKKK, which allows 150 ppm NOx at 15% O₂ for sub-zero operation.

For customers who wish to permit at a single emission rate over all ambient temperatures, inlet air heating can be used to raise the engine inlet air temperature (T_1) above 0°F. With inlet air heating to keep T_1 above 0°F, standard emission warranty levels may be offered.

Inlet air heating technology options include an electric resistance heater, an inlet air to exhaust heat exchanger and a glycol heat exchanger.

If an emissions warranty is desired and ambient temperatures are commonly below $-20^{\circ}F$ ($-29^{\circ}C$), inlet air heating can be used to raise the turbine inlet temperature (T_1) to at least $-20^{\circ}F$. In such cases, the values shown in Table 1 can be warranted for new production.

EMISSIONS ESTIMATES IN NON-SOLONOX MODE (LOW LOAD)

At operating loads < 50% (<40% load for the *Titan* 250) on natural gas fuel and < 65% (< 80% load for *Centaur* 40) on liquid fuels, *SoLoNOx* engines are controlled to increase stability and transient response capability. The control steps that are required affect emissions in two ways: 1) pilot fuel flow is increased, increasing NOx emissions, and 2) airflow through the combustor is increased, increasing CO emissions. Note that the load levels are approximate. Engine controls are triggered either by power output for single-shaft engines or gas producer speed for two-shaft engines.

A conservative method for estimating emissions of NOx at low loads is to use the applicable NSPS: 40CFR60 subpart GG or KKKK. For projects that commence construction after February 18, 2005, subpart KKKK is the applicable NSPS and contains a NOx level of 150 ppm @ 15% O_2 for operating loads less than 75%.

Table 4 provides estimates of NOx, CO, and UHC emissions when operating in non-SoLoNOx mode for natural gas or liquid fuel. The estimated emissions can be assumed to vary linearly as load is decreased from just below 50% load for natural gas (or 65% load for liquid fuel) to idle.

The estimates in Table 4 apply for any product for gas only or dual fuel systems using pipeline quality natural gas. Refer to Product Information Letter 205 for *Mercury* 50 emissions estimates.

Table 4. Estimated Emissions in non-SoLoNOx Mode

Ambient	Fuel System	Engine Load	NOx, ppm	CO, ppm	UHC, ppm
	Centaur 40/50, 7	Taurus 60/65/70, M	ars 90/100, T	itan 130	
≥ -20°F (-29°C)	Natural Gas	Less than 50%	70	8,000	800
201 (200)	I Valurar Cas	Idle	50	10,000	1,000
< -20°F (-29°C)	Natural Gas	Less than 50%	120	8,000	800
201 (25 0)	Matural Cas	Idle	120	10,000	1,000
		Titan 250			
≥ -20°F (-29°C)	Natural Gas	Less than 40%	50	25	20
= -20 1 (-25 0)	Natural Cas	Idle	50	2,000	200
<-20°F (-29°C)	Natural Gas	Less than 40%	70	150	50
(-201 (-25 0)	Natural Cas	Idle	70	2,000	200
	Centaur 50,	Taurus 60/70, Mai	rs 100, <i>Titan</i> '	130	
≥ -20°F (-29°C)	Liquid	Less than 65%	120	1,000	100
- 201 (20 0)	Liquid	Idle	120	10,000	3,000
<-20°F (-29°C)	Liquid	Less than 65%	120	1,000	150
(-29 0)	Liquid	Idle	120	10,000	3,000
		Centaur 40			
≥ -20°F (-29°C)	Liquid	Less than 80%	120	1,000	100
201 (-29 0)	Liquiu	Idle	120	10,000	3,000
< -20°F (-29°C)	Liquid	Less than 80%	120	1,000	150
-201 (-29 0)	Liquiu	Idle	120	10,000	3,000

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc. Solar, Titan, Mercury, Mars, Centaur and SoLoNOx are trademarks of Solar Turbines Incorporated. Specifications subject to change without notice. Printed in U.S.A.

Volatile Organic Compound, Sulfur Dioxide, and Formaldehyde Emission Estimates

Leslie Witherspoon Solar Turbines Incorporated

PURPOSE

This Product Information Letter summarizes methods that are available to estimate emissions of volatile organic compounds (VOC), sulfur dioxide (SO₂), and formaldehyde from gas turbines. Emissions estimates of these pollutants are often necessary during the air permitting process.

INTRODUCTION

In absence of site-specific or representative source test data, Solar refers customers to a United States Environmental Protection Agency (EPA) document titled "AP-42" or other appropriate EPA reference documents. AP-42 is a collection of emission factors for different emission sources. The emission factors found in AP-42 provide a generally accepted way of estimating emissions when more representative data are not available. The most recent version of AP-42 (dated April 2000) can be found at:

http://www.epa.gov/ttn/chief/ap42/ch03/index.html

Solar does not typically warranty the emission rates for VOC, SO₂ or formaldehyde.

Volatile Organic Compounds

Many permitting agencies require gas turbine users to estimate emissions of VOC, a subpart of the unburned hydrocarbon (UHC) emissions, during the air permitting process. Volatile organic compounds, non-methane hydrocarbons (NMHC), and reactive organic gases (ROG) are some of the many ways of referring to the non-methane (and non-ethane) portion of an "unburned hydrocarbon" emission estimate.

For natural gas fuel, Solar's customers use 10-20% of the UHC emission rate to represent VOC

emissions. The estimate of 10-20% is based on a ratio of total non-methane hydrocarbons to total organic compounds. The use of 10-20% provides a conservative estimate of VOC emissions. The balance of the UHC is assumed to be primarily methane.

For liquid fuel, it is appropriate to estimate that 100% of the UHC emission estimate is VOC.

Sulfur Dioxide

Sulfur dioxide emissions are produced by conversion of sulfur in the fuel to SO_2 . Since Solar does not control the amount of sulfur in the fuel, we are unable to predict SO_2 emissions without a site fuel composition analysis. Customers generally estimate SO_2 emissions with a mass balance calculation by assuming that any sulfur in the fuel will convert to SO_2 . For reference, the typical mass balance equation is shown below.

Variables: wt % of sulfur in fuel Btu/lb fuel (LHV*) MMBtu/hr fuel flow (LHV)

$$\frac{\text{lb SO}_2}{\text{hr}} = \left(\frac{\text{wt\% Sulfur}}{100}\right) \left(\frac{\text{lb fuel}}{\text{Btu}}\right) \left(\frac{10^6 \text{ Btu}}{\text{MMBtu}}\right) \left(\frac{\text{MMBtu fuel}}{\text{hr}}\right) \left(\frac{\text{MW SO}_2}{\text{MW Sulfur}}\right)$$

As an alternative to the mass balance calculation, EPA's AP-42 document can be used. AP-42 (Table 3.1-2a, April 2000) suggests emission factors of 0.0034 lb/MMBtu for gas fuel (HHV*) and 0.033 lb/MMBtu for liquid fuel (HHV).

*LHV = Lower Heating Value; HHV = Higher Heating Value

Formaldehyde

In gas turbines, formaldehyde emissions are a result of incomplete combustion. Formaldehyde

PIL 168, Rev 4 1 14 May 2012

in the exhaust stream is unstable and very difficult to measure. In addition to turbine characteristics including combustor design, size, maintenance history, and load profile, the formaldehyde emission level is also affected by:

- Ambient temperature
- Humidity
- Atmospheric pressure
- Fuel quality
- Formaldehyde concentration in the ambient air
- Test method measurement variability
- Operational factors

The emission factor data in Table 1 is an excerpt from an EPA memo: "Revised HAP Emission

Factors for Stationary Combustion Turbines. 8/22/03." The memo presents hazardous air pollutant (HAP) emission factor data in several categories including: mean, median, maximum, and minimum. The emission factors in the memo are a compilation of the HAP data EPA collected during the Maximum Achievable Control Technology (MACT) standard development process. The emission factor documentation shows there is a high degree of variability in formaldehyde emissions from gas turbines, depending on the manufacturer, rating size of equipment, combustor design, and testing events. To estimate formaldehyde emissions from gas turbines, users should use the emission factor(s) that best represent the gas turbines actual / planned operating profile. Refer to the memo for alternative emission factors.

Table 1. EPA's Total HAP and Formaldehyde Emission Factors for <50 MW Lean-Premix Gas Turbines burning Natural Gas

(Source: Revised HAP Emission Factors for Stationary Combustion Turbines, OAR-2002-0060, IV-B-09, 8/22/03)

Pollutant	Engine Load	95% Upper Confidence of Mean, Ib/MMBtu HHV	95% Upper Confidence of Data, Ib/MMBtu HHV	Memo Reference
Total HAP	> 90%	0.00144	0.00258	Table 19
Total HAP	All	0.00160	0.00305	Table 16
Formaldehyde	> 90%	0.00127	0.00241	Table 19
Formaldehyde	All	0.00143	0.00288	Table 16

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc. Solar is a trademark of Solar Turbines Incorporated. Specifications subject to change without notice. Printed in U.S.A. © 2008 Solar Turbines Incorporated. All rights reserved.

PIL 168, Rev 4 2 14 May 2012 Caterpillar: Confidential Green

Emission Estimates at Start-up, Shutdown, and Commissioning for SoLoNOx Combustion Products

Leslie Witherspoon
Solar Turbines Incorporated

PURPOSE

The purpose of this Product Information Letter (PIL) is to provide emission estimates for start-up and shutdown events for $Solar^{\oplus}$ gas turbines with $SoLoNOx^{TM}$ dry low emissions combustion systems. The commissioning process is also discussed.

INTRODUCTION

The information presented in this document is representative for both generator set (GS) and compressor set/mechanical drive (CS/MD) combustion turbine applications. Operation of duct burners and/or any add-on control equipment is not accounted for in the emissions estimates. Emissions related to the start-up, shutdown, and commissioning of combustion turbines will not be guaranteed or warranted.

Combustion turbine start-up occurs in one of three modes: cold, warm, or hot. On large, utility size, combustion turbines, the start-up time varies by the "mode". The start-up duration for a hot, warm, or cold *Solar* turbine is less than 10 minutes in simple-cycle and most combined heat and power applications.

Heat recovery steam generator (HRSG) steam pressure is usually 250 psig or less. At 250 psig or less, thermal stress within the HRSG is minimized and, therefore, firing rampup is not limited. However, some combined heat and power plant applications will desire or dictate longer start-up times, therefore emissions assuming a 60-minute start are also estimated.

A typical shutdown for a *Solar* turbine is <10 minutes. Emissions estimates for an elongated shutdown, 30-minutes, are also included.

Start-up and shutdown emissions estimates for the *Mercury*™ 50 engine are found in PIL 205.

For start-up and shutdown emissions estimates for conventional combustion turbines, landfill gas, digester gas, or other alternative fuel applications, contact Solar's Environmental Programs Department.

START-UP SEQUENCE

The start-up sequence, or getting to SoLoNOx combustion mode, takes three steps:

- Purge-crank
- 2. Ignition and acceleration to idle
- 3. Loading / thermal stabilization

During the "purge-crank" step, rotation of the turbine shaft is accomplished with a starter motor to remove any residual fuel gas in the engine flow path and exhaust. During "igni-

tion and acceleration to idle," fuel is introduced into the combustor and ignited in a diffusion flame mode and the engine rotor is accelerated to idle speed.

The third step consists of applying up to 50% load while allowing the combustion flame to transition and stabilize. Once 50% load is achieved, the turbine transitions to SoLoNOx combustion mode and the engine control system begins to hold the combustion primary zone temperature and limit pilot fuel to achieve the targeted nitrogen oxides (NOx), carbon monoxide (CO), and unburned hydrocarbons (UHC) emission levels.

Steps 2 and 3 are short-term transient conditions making up less than 10 minutes.

SHUTDOWN PROCESS

Normal, planned cool down/shutdown duration varies by engine model. The *Centaur*[®] 40, *Centaur* 50, *Taurus*™ 60, and *Taurus* 65 engines take about 5 minutes. The *Taurus* 70, *Mars*® 90 and 100, *Titan*™ 130 and *Titan* 250 engines take about 10 minutes. Typically, once the shutdown process starts, the emissions will remain in *SoLoNOx* mode for approximately 90 seconds and move into a transitional mode for the balance of the estimated shutdown time (assuming the unit was operating at full-load).

START-UP AND SHUTDOWN EMISSIONS ESTIMATES

Tables 1 through 5 summarize the estimated pounds of emissions per start-up and shut-down event for each product. Emissions estimates are presented for both GS and CS/MD applications on both natural gas and liquid fuel (diesel #2). The emissions estimates are calculated using empirical exhaust characteristics.

COMMISSIONING EMISSIONS

Commissioning generally takes place over a two-week period. Static testing, where no combustion occurs, usually requires one week and no emissions are expected. Dynamic testing, where combustion will occur, will see the engine start and shutdown a number of times and a variety of loads will be placed on the system. It is impossible to predict how long the turbine will run and in what combustion / emissions mode it will be running. The dynamic testing period is generally followed by one to two days of "tune-up" during which the turbine is running at various loads, most likely within low emissions mode (warranted emissions range).

Solar Turbines Incorporated 9330 Sky Park Court San Diego, CA 92123-5398

Caterpillar is a registered trademark of Caterpillar Inc.

Solar, Titan, Mars, Taurus, Mercury, Centaur, Saturn, SoLoNOx, and Turbotronic are trademarks of Solar Turbines Incorporated. All other trademarks are the intellectual property of their respective companies. Specifications are subject to change without notice.

PIL 170 Revision 5 2 13 June 2012

¹ 40% load for the *Titan* 250 engine on natural gas. 65% load for all engines on liquid fuel (except 80% load for the *Centaur* 40).

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx Generator Set Applications 10 Minute Start-up and 10 Minute Shutdown Table 1.

Natural Gas Fuel

Data will NOT be warranted under any circumstances

	Cent	Centaur 40 4701S	200		Cent	Centaur 50 6201S	015		Taur	Taurus 60 7901 S	MS		Taur	Taurus 65 8401 S	315	
	NOx	8	UHC	C02	NOX	တ	UHC	C02	NOx	8	UHC	C02	NOx	8	UHC	705
	(sql)	(lbs)	(lbs)	(lbs)	(lbs)	(lps)	(tps)	(lbs)	(lbs)	(lbs)	(lbs)	(Ilbs)	(lbs)	(lps)	(lbs)	(Ips)
Total Emissions per Start (lbs)	9.0	58.1	3.3	359	0.8	75.0	75.0 4.3 454 0.8	454	9.0	78.5		4.5 482 0.9 85.8 4.9	6.0	85.8	4.9	523
Total Emissions per Shutdown (Ibs)	0.3	25.5	1.5	160	0.4		31.1 1.8 194	194	0.4	34.7	2.0	247	0.4	38.2	2.2	737

	Taur	Taurus 70 10801S	8015		Mars 9	Mars 90 13002S GSC	GSC		Mars 10	Mars 100 16002S GSC	GSC		Titan	Than 130 20501S	15		Titan	Titan 250 300025	25	
	NOx	8	NOx CO UHC	200	NOx	8	UHC	C02	CO2 NOx	8	OHC	C02	×Õ	8	OHC	C02	χOΝ	<u>ც</u>	SH	8
7.00	(lbs)	(lbs) (lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)	(lps)	(lbs)	(lbs)	(lps)	(lbs)	(lbs)	lbs)	(lbs)	lbs)	(Ibs)	(lbs)	(lbs)
Total Emissions per Start (lbs) 1.1	1.1	103.9	103.9 5.9	634	1.4	129.0	7.4	898	868 1.6 151.2 8.6	151.2		952 2.1 195.6	2.1	195.6	11.2 1,194 2.5 22.7	1,194	2.5	7.22	1.5	1,925
Total Emissions per Shutdown (lbs) 1.3 110.7 6.3	1.3	110.7	6.3	689	1.7	1.7 147.9		912	8.4 912 1.9 166.8	166.8		9.5 1.026	2.4	2.4 210.0 12.0 1.303	12.0	1,303	3.0	3.0 19.9 1.5	1.5	1.993

Assumes ISO conditions: 59F, 60% RH, sea level, no losses

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx Generator Set Applications 60 Minute Start-up and 30 Minute Shutdown Natural Gas Fuel Table 2.

Data will NOT be warranted under any circumstances

	Cent	Sentaur 40 47015	7015		Cent	Centaur 50 6201S	015		Taur	Taurus 60 7901S	MS		Tour	Taurus 65 8401 S	HS	
	NOX	8	OHC	C02	NOX	00	UHC	C02	NOx	8	CHC	C02	NOX	8	OHC	C02
	(lps)	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)	(lps)	(lbs)	(lbs)	(lbs)	(lbs)	(lps) (I	SS	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs)	4.1	219.4	13.0	3,420		272.4	5.0 272.4 16.1 4,219	4,219	5.7	299.8	17.8	4.780	5.7 299.8 17.8 4,780 6.1 326.5 19.3	326.5	19.3	5.074
																1
Total Emissions per Shutdown (lbs)	1.8	121.1	121.1 7.1 1.442 2.3 163.3 9.5 1.834 2.5 163.5	1,442	23	163.3	9.5	1.834	2.5	163.5		7 1 994	26 1772 404 2119	6777	40.4	2 440

	Taur	Taurus 70 108015	3015		Mar	Mars 90 13002S	25		Mars	Mars 100 16002S	125		Than	Titan 130 205015	115		Titan	Titan 250 300025	25	
	NOX	00	NOx CO UHC CO2	C02	NOx	8	UHC	C02	NOX	8	OHC	C02	NOX	8	OHC	7 7 7 7	×ON	ខ	CHC	8
	(lbs)	(Bg)	(lbs)	(Ebs)	(lbs)	(Ibs)	(lbs)	(lbs)	gq	(lbs)	(SS)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Total Emissions per Start (lbs) 7.6 410.3 24.2 6,164	9.7	410.3	24.2	6,164	10.5	570.8	33.7	8,641	11.3	583.5	34.6	9,691	13.8	740.4 43.8 11,495	43.8	11,495	14.6	75.5	7.3	16,253
Total Emissions per Shutdown (lbs) 3.3 223.0 13.0 2,588	3.3	223.0	13.0	2,588	4.3	4.3 277.0	16.2 3,685	3.685	4.8	308.1	18.0 4.056	4.056	6.0	6.0 4053	73.7	77.7 A RDE	6.2	5.7 E	57 6 44 7 777	77

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Estimation of Start-up and Shutdown Emissions (lbs/event) for SoLoNOx CS/MD Applications 10 Minute Start-up and 10 Minute Shutdown Table 3.

Natural Gas Fuel

Data will NOT be warranted under any circumstances

	Cen	Centaur 40 47025	025		Cen	Centaur 50 6102S	22		Tau	Taurus 60 7802S	52	1300
	NOx	NOx CO	UHC	C02	NOx	NOx CO UHC	UHC	C02	NOx	ខ	OHC	C02
	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)	(Ibs)	(lps)	(lps)	(lbs)	(Ibs)	(lps)	(Ibs)
Total Emissions per Start (lbs) 0.7	0.7	64.4	3.7	392	392 0.8	69.1 4.0	4.0		469 0.7	64.3	3.7	410
Total Emissions per Shutdown (Ibs)	0.3	30.2	1.7	181	0.4	35.4	2.0	217	0.4	33.0	1.9	204

	Tati	Taurus 70 103025	025		Mars 94	Mars 90 13002S CSMD	SMD		Mars 10	Mars 100 16002S CSMD	CMS		Titon	Titan 130 205025	25		Titon	Titan 250 300025	25	
	NOx	8	UHC	C05	NOx	8	OHC OHC	C02	NOX	8	UHC	705 C05	NOx	ខ	OHC CHC	700	NOX	8	꾥	C02
	(Ibs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(Ibs)	(Ibs)	(lbs)	(lbs)	(Ibs)	(lbs)	(lbs)	(tps)	(tps)	(lbs)	(Ibs)	(lps)	(lbs)
Total Emissions per Start (lbs)	0.8	73.1	4.2	519	1.2	109.3	6.2	805 1.4		123.5	7.1		829 1.9 176.9	176.9	10.1	10.1 1,161	2.6	26.2	1.7	1,794
Total Emissions per Shutdown (lbs)	1.1	93.4	5.3	575	1.5	132.6	7.6	817	817 1.7 149.2	149.2		8.5 920 2.4 207.6	2.4	207.6	11.9	11.9 1.272	2.9	19.1	1.4	1.918

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes natural gas fuel; ES 9-98 compliant.

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx Generator Set 10 Minute Start-up and 10 Minute Shutdown Liquid Fuel (Diesel #2) Table 4.

Data will NOT be warranted under any circumstances

	Cent	Centaur 40 4701S	7015		Cent	Centaur 50 6201S	9115		Tau	Taurus 60 7901S	015	
	NOx	8	UHC	C02	NOx	8	UHC	C02	NOx	00	OHC	C02
	(sql)	(sq)	(sql)	(lps)	(sqj)	(sqj)	(sqj)	(lbs)	(lbs)	(Ibs)	(lbs)	(sql)
Total Emissions per Start (lbs)	1.3	44.5	7.4	473	1.7	59.0	9.8	601	1.7	59.8	9.6	636
Total Emissions per Shutdown (lbs)	9.0	17.3	2.8	211		0.7 21.2	3.4	256		0.8 23.5	3.8	286

	Ташт	Tallring 70 108015	010		Mare 1	Mars 100 160075 CSC	נכנ		Tita	Titan 130 20501C	046	
						10002	2000			130 203	2	
	NOX	93	UHC	C02	NOX	8	UHC	C02	NOx	8	UHC	C02
	(sql)	(sql)	(lbs)	(sql)	(lbs)	(sql)	(sq)	(lbs)	(sql)	(sql)	(sql)	(sql)
Total Emissions per Start (lbs)	2.3	78.5	13.0	823	3.4	114.1	18.8	1,239	4.3	147.5	24.4	1,547
Total Emissions per Shutdown (lbs)	2.5	73.6	12.0	883		3.8 111.4	18.1 1,331	1,331		4.7 139.1 22.6 1,677	22.6	1,677

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes #2 Diesel fuel; ES 9-98 compliant.

Estimation of Start-up and Shutdown Emissions (Ibs/event) for SoLoNOx Generator Set Table 5.

60 Minute Start-up and 30 Minute Shutdown

Liquid Fuel (Diesel #2)

Data will NOT be warranted under any circumstances

	Cent	Centaur 40 4701S	7018		Cent	Centaur 50 6201S	01S		Tau	Taurus 60 7901S	015	
	NOx	03	ЭНО	C02	NOx	00	UHC	C02	NOX	8	UHC	C02
	(lbs)	(sql)	(lbs)	(sql)	(sqj)	(lbs)	(sql)	(lbs)	(sql)	(sqj	(Ibs)	(sq)
Total Emissions per Start (lbs)	11.7	194.7	30.9	4,255	15.2	271.9		43.3 5,302	14.7	282.6	45.0	5,962
Total Emissions per Shutdown (lbs)	4.4	84.7	13.6	1,816	6.7	164.3		27.0 2,334		6.3 159.0	26.0	2,515

	Tauı	Taurus 70 10801S	3015		Mare	Mars 100 16002S	125		Titai	Titan 130 20501S	315	
	NOx	00	ЭНО	C02	NOx	00	UHC	C02	NOx	ខ	UHC	C02
	(Ibs)	(sql)	(sql)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(sql)	(sql)	(lbs)
Total Emissions per Start (lbs)	18.4	360.3		57.4 7,375	29.1	552.0		87.7 11,685	34.4	677.0	108.0 13,731	13,731
Total Emissions per Shutdown (lbs)	8.0	207.8	34.1	3,156	12.3	302.6	49.4	4.970	15.0	388.5	63.7	5.876

Assumes ISO conditions: 59F, 60% RH, sea level, no losses.

Assumes unit is operating at full load prior to shutdown.

Assumes #2 Diesel fuel; ES 9-98 compliant.

SCR SYSTEM DESIGN DATASHEET

ENQUIRY DETAILS		
Enquiry Number	3	32237
Revision		0
Date of Revision		01-Sep-2015
Project Name		Atlantic Coast Pipeline
Project Location		ACP-3
Application		Simple Cycle
Number of SCRs		17

PROCESS DATA	Liver of the last	WHO II	2 12 11		-	The list	Read to	0.7781111	District Control	- N W		41-511	
Design Case		Case 1	Case 2	Case 3	Case 4	Çase 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12
Customer Design Case		Centaur 40	Centaur 40	Centaur 50L	Centaur 50L	Taurus 60	Taurus 60	Taurus 70	Taurus 70	Mars 100	Mars 100	Titan 130	Titan 130
Percent Load	Percent	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Fuel Case	Percent	NG	NG	NG	NG	NG	NG.	NG	NG	NG	NG	NG	NG
EXHAUST GAS EMISSIONS DATA (BEFORE CO Exhaust Gas Mass Flowrate, Wet	ID/h	464004	407400	401404	407101	400000	454704		-				
Exhaust Gas Volumetric Flowrate, Wet	ACFM	164994 87269	127403 73508	161184 91761	127484 80971	186880 107807	151704 96052	247255	179824	367228 207193	289445 177388	437956	341226
Exhaust Gas Temperature	degrees F	779.0	873.0	871.0	1004.0	888.0	999.0	139492 858.0	112363 960.0	859.0	953.0	254955 900.0	215260 993.0
		110.0	010.0	0.1.5	1997.0	555.5	333.0	800.0	800.0	833.0	33.01	500.0	833.0
Exhaust Gas Composition								i a					
Component MW													
02 31.999	vof% (wet)	15.78	15.29	14.80	14.08	14.50	13.93	14.39	13.88	14.73	14.23	14.40	13.69
H2O 18 015 N2 28 013	vol% (wet)	4.67	8.15	5.55	9.21	5.81	9.34	5.91	9.39	5.61	9.08	5.90	9.55
N2 28.013 CO2 44.010	vol% (wel) vol% (wel)	76.23	7341	75.88	73.01	75.78	72.96	75.74	72.93	75.85	73.06	75.75	72.88
Ar 39.948	vol% (wel)	2.41 0.91	2.27 0.88	2.86 0.91	2.83 0.87	3.00 0.91	2.90	3.05	2.93	2.90	2.76	3.04	3.01
0.570	sous feed	100.00	100.00	100.00	100.00	100.00	100.00	0.91	100.00	0.91 100.00	100.00	0.91 100.00	100.00
Emissions from the Source @ %02	15			145.50	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Reference applicable for ppmvd and mg	g/Nm3 (dry)							San I was					
Nox as NO2	ppmvd	25.00	25 00	9.00	9.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
Nox as NO2	lb/h	4.66	344	1.95	1.55	3.97	3.16	5.34	3.77	7.51	5.73	9.44	7.38
co	ppmvd	50.00	50.00	25 00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
CO SO2	lb/h	5.87	4 19	3.31	2.63	4.02	3.20	5.42	3.83	7.62	5.81	9.58	7.49
802	ppmvd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
503	lb/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
803	ppmvd lb/h	8.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
E	No.	9.00	0.00	0.00	9.00	0.00	9,00	V.00	0.00	0.00	0.00	0.00	0.00
COOLING AIR DATA		0 3 5	1000										
Cooling Air Mass Flowrate, Wet	B/b	7181.2	27800 1	29270.9	57444.9	38705.3	67013.0	40077.2	73373.3	60074.6	104237.6	98593.9	147099.4
Cooling Air Volumetric Flowrate, Wet	ACFM	1387	6438	5653	13303	7475	15518	7739	16991	11601	24139	19040	34064
Ambient Air Temperature	degrees F	0.00	100.00	0 00	100.00	0.00	100.00	0.00	100.00	0.00	100.00	0 00	100 00
Relative Humidity	Percent	60.00	60.00	60 00	60 00	60 00	60 00	60.00	60.00	60.00	60.00	60 00	60 00
I								1000	37.00				
EXHAUST GAS EMISSIONS DATA (AFTER COOL	LING)												
Exhaust Gas Mass Flowrate, Wet	lb/h	172175	155203	190455	184929	225585	218717	287332	253197	427303	393683	536550	488325
Exhaust Gas Volumetric Flowrate, Wet	ACFM	88898	80938	98384	96292	116559	113920	148553	131945	220785	205195	277243	254464
Exhaust Gas Temperature (after cooling)	degrees F	750.00	750.00	750 00	750.00	750.00	750 00	750.00	750.00	750.00	750 00	750 00	750 00
			S		for a second								
Exhaust Gas Composition								2410					
Component MW													
02 31.999	vol% (wel)	15.99	16,15	15 73	15 95	15 59	15.82	15.29	15.68	15 59	15.78	15 59	15.62
H2O 18.015	vol% (wet)	4.48	7.38	4.72	7.55	4 84	7.67	5,11	7.79	4 84	7.70	4 84	7.84
N2 28 013	vol% (wet)	78.30	7371	76.21	73 65	76.16	73 61	76.05	73.55	76.15	73 59	76.16	73.54
CO2 44.010	vol% (wet)	2.31	1.87	2 43	1.97	2.50	2.03	2.63	2.10	2 50	2.04	2 49	2.12
Ar 39.948	vol% (wel)	0.91	0.88	0.91	0.88	0.91	0.88	0.91	0.88	0.91	0.68	0.91	88.0
		100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100 00	100.00	100 00
Emissions from the Source @ %02	15				1								
Reference applicable for ppmvd and mg	rNm3 (dry)									I			
Nox as NO2	ppmvd	25.00	25.06	9.00	9 04	15.00	15 07	15.00	15.06	15 00	15 06	15.00	15 06
Nox as NO2	lb/h	4.66	3.44	1.95	1.55	3 97	3.16	5 34	377	7.51	5.73	9 44	7.38
co	ppmvd	50.00	50.13	25.00	25.11	25 00	25.11	25.00	25.10	25 00	25 09	25.00	25.11
co	lb/h	5 67	4.19	3 31	2 63	4 02	3 20	5.42	3.83	7.62	5 81	9.58	7.49
802	ppmvd	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00
502	lb/h	0.00	0.00	0.00	0 00	0 00	0 00	0.00	0.00	0.00	0.00	0 00	0.00
503	ppmvd	0 00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0.00
803	lb/h	0.00	0.00	0.00	0 00	0.00	0 00	0.00	0 00	0.00	0.00	0 00	0.00
Particulates				1000									
	kg/h	0.00	0.00	0.00	0 00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0 00
Trace Elements VOC	mg/Nm3 (dry)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00
l _{voc}	ppmvd	0.00	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0 00
Amount of blass on \$103				-									
Amount of Nox as NO2	Percent	50	50	50	50	50	50	50	50	50	50	50	50
L													
Nox Reduction	Percent	80.00	80.00	44 44	44 44	66.67	66 67	66.67	66.67	66 67	66 67	66.67	66 67
Dilution Air Required		90.0	007	000	-								
Dilution Air Required	lb/h	327	327	327	327	327	327	327	327	327	327	655	327
Aqueous Ammonia Requirement	SCFM Ib/h	68	68	68	68	68	68	68	68	68	68	135	68
Aqueous Ammonia Requirement				6	5	10	8	14	10	20	15	25	19
	gal/month	1046	772	569	452	989	787	1331	941	1873	1429	2354	1841
Total Mass injected by SCR	b/h	338	335	333	332	337	335	341	337	347	342	680	346
Exhaust Gas Mass Flowrate, Wet at SCR catalyst	8-0-	(70512 -	155538 2	100707.0	105000.0	205000 0	Outron C	007070	OFFICE	40	8810015		100000
Exhaust Gas Vol Flowrate, Wet at SCR Catalyst	Ib/h	172513.1		190787 8	185260 6	225922.6	219052.2	287673.0	253534 1	427649.1	394024 5	537229.4	488671.5
LANDON DES FOR EXPRESO, FREE BLOCK CHERYST	ACFM	89073	81113	98556	96465	116734	114095	148729	132120	220965	205373	277594	254645
Performance Warranties @ %02	15			-	-								
Reference applicable for ppmvd and mg!				-				-	-				
Nox as NO2	ppmvd	50	50	50	50	F.0							
Nox as NO2	lb/h	0.93	0.69	1.09	0.86	5.0	50	5.0	5.0	50	50	5.0	50
NH3 Sip	ppmvd	10.00	10.03	10.00	10 04	1.32	1.05	1.78	1.26	2 50	1.91	3.15	2.46
NH3 Sip	lb/h	0.69	0.51	0.80	0.64	0 98	0.78	10.00	10 04	10.00	10.04	10 00	10 04
* VTA = Vendor to Advise	2011	0.03	V.31	0.00	0.04	0.98	0.78	1.32	0.93	1.85	1.41	2 33	1.82
THE PERSON NAMED IN COLUMN													

SITE/AMBIENT CONDITIONS		
Design Ambient Temperature	100	degrees F
Design Ambient Pressure	407	inH2O
Site Elevation	VARIOUS	ft
Gauge Duct Pressure	20.00	inH2O
Relative Hurnidity	60	Percent

AFCU DESIGN		
Reagent	Aqueous Ammonia	_
Reagent Concentration	19.00 %w/w	_

RATING STRATEGY:

1800

STANDARD

ENGINE SPEED (rpm):

COMPRESSION RATIO:	11 APPLICATION					STANDARD
AFTERCOOLER TYPE:	SCAC RATING LE					GENSET
AFTERCOOLER - STAGE 2 INLET ("F):	130 FUEL:	VEL:				CONTINUOUS
AFTERCOOLER - STAGE 1 INLET (*F):	192 FUEL SYST	EM-			C41	NAT GAS LOW PRESSURE
JACKET WATER OUTLET (*F)	198	Clat.				RATIO CONTROL
ASPIRATION:		SURE RANGE(ps	lest:		WITH AIR PUEL	1.5-5.0
COOLING SYSTEM:		IANE NUMBER	197			80
CONTROL SYSTEM:	ADEM3 FUEL LHV (905
EXHAUST MANIFOLD:		CAPABILITY AT 77	PE INI ET AID TE	MD (A)		2238
COMBUSTION:	LOW EMISSION POWER FA	CTOR-	I HAPPI VIV IS	me. (ii)		0.8
NOx EMISSION LEVEL (g/bhp-hr NOx):	0.5 VOLTAGE(380-4160
	•	* 9.7				
RATIN		NOTES	LOAD	100%	75%	50%
GENSET POWER	(WITHOUT FAN)	(1)(2)	akW	1300	975	650
GENSET POWER	(WITHOUT FAN)	(1)(2)	kVA	1625	1218	812
ENGINE POWER	(WITHOUT FAN)	(2)	bhp	1818	1364	910
GENERATOR EFFICIENCY		(1)	%	95.9	95.8	95.8
GENSET EFFICIENCY(@ 1.0 Power Factor)	(ISO 3048/1)	(3)	%	34.7	33.2	31.1
THERMAL EFFICIENCY	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(4)	%	50.8	52.3	54.5
TOTAL EFFICIENCY (@ 1.0 Power Factor)						
TOTAL ELITICIENCE (MY 1.0 POWER PACIO)		(5)	%	85.5	85,5	85.6
ENGINE D	ATA					
GENSET FUEL CONSUMPTION	(ISO 3046/1)	(6)	Btu/ekW-trr	9965	10415	11036
GENSET FUEL CONSUMPTION	(NOMINAL)	(6)	Blu/ekW-hr	10158	10618	11250
ENGINE FUEL CONSUMPTION	(NOMINAL)					
AIR FLOW (77°F, 14.7 psia)		(6)	Blu/bhp-hr	7261	7589	8037
	(WET)	(7)	ft3/min	4121	3172	2188
AIR FLOW	(WET)	(7)	lb/hr	18272	14067	9702
FUEL FLOW (60°F, 14.7 psia)			scfm	243	191	135
COMPRESSOR OUT PRESSURE			មែា Hg(abs)	87.4	82.5	60.2
COMPRESSOR OUT TEMPERATURE			'F	345	326	234
AFTERCOOLER AIR OUT TEMPERATURE	\$		• *	129	130	130
INLET MAN. PRESSURE	Į	(8)	in Hg(abs)	79.9	62.9	43.8
INLET MAN. TEMPERATURE	(MEASURED IN PLENUM)	(9)	*F	139	140	140
TIMING	(112 1001128 117 1 2211011)		втос	22	22	
EXHAUST TEMPERATURE - ENGINE OUTLET		(10)				22
		(11)	*F	974	985	1009
EXHAUST GAS FLOW (@engine outlet temp, 14.5		(12)	ft3/min	11850	9202	6461
EXHAUST GAS MASS FLOW	(WET)	(12)	lb/hr	18939	14590	10072
MAX INLET RESTRICTION		(13)	in H2O	10.04	7.99	3,98
MAX EXHAUST RESTRICTION		(13)	in H2O	20.07	12.41	5.51
EMISSIONS DATA -	ENGINE OUT					
NOx (as NO2)		(14)(15)	g/bhp-hr	0.50	0.50	0.50
CO		(14)(16)	g/bhp-hr	2.49	2.58	2.82
THC (mol. wt. of 15.84)		(14)(16)	g/bhp-hr	5.45	5.82	6.78
NMHC (mol. wt. of 15.84)		(14)(16)	g/bhp-hr	0.82	0.87	1.02
NMNEHC (VOCs) (mol. wt. of 15,84)	i	(14)(16)(17)	g/bhp-hr	0.54	0.58	83.0
HCHO (Formaldehyde)		(14)(16)	g/bhp-hr	0.34	0.37	0.42
CO2		(14)(16)	g/bhp-hr	504	527	559
EXHAUST OXYGEN		(14)(18)	% DRY	9.3	9.1	9.0
LAMBDA		(14)(18)	70 DKT	1.73	1.70	1.66
the actions of		(14)(10)	1	1.73	1.70	1.00
ENERGY BALAN	ICE DATA					
LHV INPUT		(19)	Btu/min	220051	172501	121849
HEAT REJECTION TO JACKET WATER (JW)		(20)(28)	Stu/min	28688	25137	21558
HEAT REJECTION TO ATMOSPHERE						
		(21)	8tu/min	7365	6138	4912
HEAT REJECTION TO LUBE OIL (OC)		(22)(28)	Btu/min	7401	6761	5967
HEAT REJECTION TO EXHAUST (LHV TO 77°F)		(23)(24)	8tu/min	81165	63518	45440
HEAT REJECTION TO EXHAUST (LHV TO 248°F)	i	(23)	8tu/min	61754	48372	34572
HEAT REJECTION TO A/C - STAGE 1 (1AC)		(25)(28)	Btu/min	9380	6325	1345
HEAT REJECTION TO A/C - STAGE 2 (2AC)		(26)(29)	Btu/min	7961	5809	3073
PUMP POWER		(27)	Btu/min	977	977	977

CONDITIONS AND DEFINITIONS

Engine rating obtained and presented in accordance with ISO 3046/1. (Standard reference conditions of 77°F, 29.60 in Hg barometric pressure.) No overload permitted at rating shown. Consult the altitude deration factor chart for applications that exceed the rated altitude or temperature.

Emission levels are all engine exhaust flange prior to any after treatment. Values are based on engine operating at steady state conditions, adjusted to the specified NOx level at 100% load. Tolerances specified are dependent upon fuel quality. Fuel methane number cannot vary more than ± 3.

For notes information consult page three.

FUEL USAG	E GUIDI		UPP STATE									
CAT METHANE NUMBER	30	35	40	45	50	55	60	65	70	75	80	100
SET POINT TIMING	•	•	-	-	•	•	22	21	20	21	22	22
DERATION FACTOR	0	0	0	0	0	0	0.84	0,92	1	1	1	1

	130	0.99	0.95 0.97	0.92	0.88	0.85 0.87	0.82	0.79	0.76 0.77	0.73	0.70	0.67	0.64	0.62
NLET	110	1	0.99	0.95	0.92	0.87	0.85	0.81	0.77	0.74	0.71	0.68	0.65	0,63
AIR	100	1	1	0.97	0.93	0.90	0.86	0.83	0.78	0.75	0,72	0.69	0.67	0.64
EMP	90	1	1	0.99	0.95	0.91	0.88	0.84	0.81	0.77	0.74	0.71	0.69	0.66
7	80	1	1	1	0.97	0.93	0.89	0.86	0.83	0.79	0.76	0.73	0.70	0.67
	70	1	1	1	0.98	0.95	0.91	0.88	0.64	0.81	0.7B	0.75	0.72	0.69
	60	1	1	1	1	0.97	0.93	0.89	0.66	0.82	0.79	0.76	0.73	0.70
	50	1	1	1	1	0.98	0.95	0.91	0.87	0.84	0.81	0.78	0.74	0.71
	-	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000

		(/	ACHRF)					_						
	130 [1.34	1.39	1.45	1,48	1,46	1.46	1.46	1.48	1.46	1.48	1.45	1.48	1,46
	120 [1.27	1.32	1.38	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39	1.39
NLET AIR	110 [1.20	1.25	1.31	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32	1.32
TEMP	100 [1.13	1.18	1.24	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
*F	90	1.06	1.11	1.17	1.18	1.18	1.18	1,18	1.18	1.18	1.18	1.18	1.18	1.18
•	80	1	1.05	1.09	1,11	1,11	1,11	1,11	1,11	1,11	1,11	1,11	1.11	1.11
	70	1	1	1.02	1,04	1,04	1.04	1.04	1.04	1.04	1,04	1,04	1.04	1.04
	60	1	1	1	1	1	1	1	1	1	1	1	1	1
	50	1	1	1	1	1	1	1	1	1	1	1	1	1
		0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000
		•	1000	2000	3000				E SEA LE		2000	10000	77000	

FUEL USAGE GUIDE:

This table shows the derate factor and full load set point timing required for a given fuel. Note that deration and set point timing adjustment may be required as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar methane number

ALTITUDE DERATION FACTORS:
This table shows the deration required for various air inlet temperatures and attitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for your site. The derate factors shown do not take into account external cooling system capacity. The derate factors provided assume the external cooling system can maintain the specified cooling water temperatures at site conditions.

ACTUAL ENGINE RATING:

To determine the actual rating of the engine at site conditions, one must consider separately, limitations due to fuel characteristics and air system limitations. The Fuel Usage Guide deration establishes fuel limitations. The Altitude/Temperature deration factors and RPC (reference the Caterpitar Methane Program) establish air system limitations. RPC comes into play when the Altitude/Temperature deration is less than 1.0 (100%). Under this condition, add the two factors together. When the site conditions do not require an Altitude/Temperature derate (factor is 1.0), it is assumed the turbocharger has sufficient capability to overcome the low fuel relative power, and RPC is ignored. To determine the actual power available, take the lowest rating between 1) and 2).

- 1) Fuel Usage Guide Deration
- 2) 1-((1-Attitude/Temperature Deration) + (1-RPC))

AFTERCOOLER HEAT REJECTION FACTORS(ACHRF):

To maintain a constant air inlet manifold temperature, as the inlet air temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure. This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor (ACHRF) to adjust for inlet air temp and altitude conditions. See notes 28 and 29 for application of this factor in calculating the heat exchanger sizing criteria. Faiture to property account for these factors could result in detonation and cause the engine to shutdown or fall.

INLET AND EXHAUST RESTRICTIONS FOR ALTITUDE CAPABILITY:

The altitude densite chart is based on the maximum inlet and exhaust restrictions provided on page 1. Contact factory for restrictions over the specified values. Heavy Densites for higher restrictions will apply.

- 1. Generator efficiencies, power factor, and voltage are based on standard generator. [Genset Power (ekW) is calculated as: Engine Power (bkW) x Generator Efficiency], [Genset Power (kVA) is calculated as: Engine Power (bkW) x Generator Efficiency / Power Factor)

- 2. Rating is with two engine driven water pumps. Tolerance is (+)3, (-)9% of full load.
 3. Genset Efficiency published in accordance with ISO 3046/1, based on a 1.0 power factor.
 4. Thermal Efficiency is calculated based on energy recovery from the jacket water, lube oil, 1st stage aftercooler, and exhaust to 248°F with engine operation at ISO 3046/1 Genset Efficiency, and assumes unburned fuel is converted in an oxidation catalyst.
- 5. Total efficiency is calculated as: Genset Efficiency + Thermal Efficiency. Tolerance is ±10% of full load data.

 6. ISO 3046/1 Genset fuel consumption tolerance is ±3.0% of full load data at the specified power factor.
- 7. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.
- 8. Inlet manifold pressure is a nominal value with a tolerance of ± 5 %
- Inlet manifold temperature is a nominal value with a tolerance of ± 9°F.
- Timing indicated is for use with the minimum fuel methane number specified. Consult the appropriate fuel usage guide for timing at other methane numbers.
 Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F.
- 12. Exhaust flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 6 %.
- 13. Inlet and Exhaust Restrictions are maximum allowed values at the corresponding loads. Increasing restrictions beyond what is specified will result in a significant engine denate
- 14. Emissions data is at engine exhaust flange prior to any after treatment.
- 15. NOx tolerances are ± 18% of specified value.
- 16. CO, CO2, THC, NMHC, NMNEHC, and HCHO values are "Not to Exceed" levels, THC, NMHC, and NMNEHC do not include aidehydes.
- 17. VOCs Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ
- 18. Exhaust Oxygen tolerance is ± 0.5; Lembda tolerance is ± 0.05. Lambda and Exhaust Oxygen level are the result of adjusting the engine to operate at the specified NOx level. 19. LHV rate tolerance is ± 3.0%.
- 20. Heat rejection to jacket water value displayed includes heat to jacket water alone. Value is based on treated water. Tolerance is ± 10% of full load data
- 21. Heat rejection to atmosphere based on treated water. Tolerance is ± 50% of full load data.
- 22. Lube oil heat rate based on treated water. Tolerance is ± 20% of full load data.
 23. Exhaust heat rate based on treated water. Tolerance is ± 10% of full load data.
- 24. Heat rejection to exhaust (LHV to 77°F) value shown includes unburned fuel and is not intended to be used for sizing or recovery calculations

- 24. Heat rejection to exhaust (LFV to 77) value shown includes unburned nice and is not intended to be used for sizing or recovery calculations.

 25. Heat rejection to A/C Stage 1 based on treated water. Tolerance is ±5% of full load data.

 26. Heat rejection to A/C Stage 2 based on treated water. Tolerance is ±5% of full load data.

 27. Pump power includes engine driven jacket water and aftercooler water pumps. Engine brake power includes effects of pump power.

 28. Total Jacket Water Circuit heat rejection is calculated as: (JW x 1.1) + (OC x 1.2) + (1AC x 1.05) + [0 764 x (1AC + 2AC) x (ACHRF 1) x 1.05]. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

 29. Total Second Stage Aftercooler Circuit heat rejection is calculated as: (2AC x 1.05) + [(1AC + 2AC) x 0.236 x (ACHRF - 1) x 1.05]. Heat exchanger sizing criterion is maximum circuit heat rejection at site conditions, with applied tolerances. A cooling system safety factor may be multiplied by the total circuit heat rejection to provide additional margin.

GAS ENGINE TECHNICAL DATA

CATERPILLAR'

ENGINE POWER (bhp): ENGINE SPEED (rpm): EXHAUST MANIFOLD: 1818 1800

COOLING SYSTEM:

JW+OC+1AC, 2AC

DRY

JACKET WATER OUTLET (°F):

198

Free Field Mechanical and Exhaust Noise

	SOUND PRESSI	JRE LE	VEL (dB	1							
			Octave Ba	and Cent	er Freque	ency (OB	CF)				
100%	Load Data		dB(A)	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
Mechanical	Distance from	3.3	109.3	64.7	81.4	87.8	94.9	98.1	95.4	93.9	105.2
Sound	the Engine (ft)	23.0	92.4	47.8	64.5	70.9	78	81.2	78.5	77	88.3
		49.2	85.8	41.2	57.9	64.3	71.4	74.6	71.9	70.4	81.7
Exhaust Sound	Distance from	4.9	112.1	70.5	105.3	90.6	92.1	91.7	98.5	100.2	99
	the Engine (ft)	23.0	98.7	57.1	91.9	77.2	78.7	78.3	85.1	86.8	85.6
		49.2	92.1	50.5	85.3	70.6	72.1	81.7	78.5	80.2	79

SOUND PARAMETER DEFINITION:

Data Variability Statement:

Sound data presented by Caterpillar has been measured in accordance with ISO 6798 in a Grade 3 test environment. Measurements made in accordance with ISO 6798 will result in some amount of uncertainty. The uncertainties depend not only on the accuracies with which sound pressurelevels and measurement surface areas are determined, but also on the 'near-field error' which increases for smaller measurement distances and lower frequencies. The uncertainty for a Grade 3 test environment, that has a source that produces sounds that are uniformly distributed in frequency over the frequency range of interest, is equal to 4 dB (A-weighted). This uncertainty is expressed as the largest value of the standard deviation.

Load Acceptance

Transient Loa	d Acceptance				
Load Step	Frequency Deviation +/- (%)	Voltage Deviation +/- (%)	Recovery Time (sec)	Classification as Defined by ISO 8528 - 5	Notes
25	+16/-16	+12/-12	20		
20	+9/-9	+9/-9	9	G1	2
15	+7/-7	+6/-6	7	G1	2
10	+5/-5	+3/-3	5	G1	2
5	+3/-3	+1/-1	5	G1	2
-5	+3/-3	+1/-1	5		
-10	+5/-5	+3/-3	5		
-15	+7/-7	+6/-8	7		
-20	+9/-9	+9/-9	9		
-25	+16/-16	+12/-12	20		
Breaker Open	+25/-25	+35/-35	40		1
Recovery Specification	+1.75/-1.75	+5/-5			
Steady State Specification	+1.25/-1.25	+5/-5			

Transient information

The transient load steps listed above are stated as a percentage of the engine's full rated load as indicated in the appropriate performance technical data sheet. Site ambient conditions, fuel quality, inlet/exhaust restriction and emissions satisfies will all affect engine response to load change. Engines that are not operating at the standard conditions stated in the Technical data sheet should be set up according to the guidelines included in the technical data; applying timing changes and/or engine derates as needed. Adhers stated in the settings guidelines will allow the engines to retain the transient performance stated in the tables above as a percentage of the site derated power (where appropriate). Fuel supply pressure and stability is critical to transient performance. Proper installation requires that all fuel train components (including filters, shut off valves, and regulators) be sized to ensure adequate fuel be delivered to the engine. The following are fuel pressure requirements to be measured at the engine mounted fuel control valve.

- a. Steady State Fuel Pressure Stability +/- .15 psi/sec
- b. Transient fuel Pressure Stability +/- .15 psl/sec

inlet water temperature to the SCAC must be maintained at specified value for all engines, it is important that the external cooling system design is able to maintain the inlet water temp to inter water temperature to the SCAC must be maintained at specified value for all engines. It is important that the external cooling system design is able to maintain the Inlet water temp to the SCAC interforment of the Water temperature is to maintain stable inlet manifold air temperature. The Air Fuel Ratio control system requires up to 180 seconds to converge after a load step has been performed for NOx to return to nominal setting. If the stabilization time is not met between load steps the translent performance listed in the document may not be met. Differences in generator inertia may change the translent response of engine. Engine Governor gains and Voltage regulator settings may need to be tuned for site conditions. The time needed to start and stabilize at rated engine speed is a minimum of 60 seconds after a successful crank cycle. Engines must be maintained in accordance to guidelines specified in the Caterpillar Service Manuals applicable to each engine. Wear of components outside of the specified tolerances will affect the translent capability of the engine. Translent performance data is representative of a "Hot" (previously loaded or fully heat soaked) genset.

- 1. For unloading the engine to 0% load from a loaded condition no external input is needed. The engine control algorithm employs a load sensing strategy to determine a load drop. In the event that the local generator breaker opens the strategy provides control to the engine that resets all control inputs to the rated idle condition. This prevents engine over speeding and will allow the engine to remain running unloaded at the rated synchronous speed.
- 2. The engines specified above have been tested against the voltage deviation, frequency deviation, and recovery time requirements defined in ISO 8528 5. At this time the engines stated above will meet class G1 transient performance as defined by tSO 8528 5 with exceptions.

STANDBY POWER RATING

100 kW, 125 kVA, 60 Hz

PRIME POWER RATING*

90 kW, 113 kVA, 60 Hz

*Built in the USA using domestic and foreign parts

*EPA Certified Prime ratings are not available in the U.S. or its Territories.

Image used for illustration purposes only

CODES AND STANDARDS

Generac products are designed to the following standards:

UL2200, UL508, UL142, UL498

NFPA70, 99, 110, 37

NEC700, 701, 702, 708

ISO9001, 8528, 3046, 7637, Pluses #2b, 4

NEMA ICS10, MG1, 250, ICS6, AB1

ANSI C62.41

os pd | IBC 2009, CBC 2010, IBC 2012, ASCE 7-05, ASCE 7-10, ICC-ES AC-156 (2012)

POWERING AHEAD

For over 50 years, Generac has led the industry with innovative design and superior manufacturing.

Generac ensures superior quality by designing and manufacturing most of its generator components, including alternators, enclosures and base tanks, control systems and communications software.

Generac's gensets utilize a wide variety of options, configurations and arrangements, allowing us to meet the standby power needs of practically every application.

Generac searched globally to ensure the most reliable engines power our generators. We choose only engines that have already been proven in heavy-duty industrial application under adverse conditions.

Generac is committed to ensuring our customers' service support continues after their generator purchase.

STANDARD FEATURES

ENGINE SYSTEM

General

- · Oil Drain Extension
- · Air Cleaner
- · Fan Guard
- · Stainless Steel flexible exhaust connection
- · Factory Filled Oil & Coolant
- · Radiator Duct Adapter (open set only)
- · Critical Exhaust Silencer (enclosed only)

Fuel System

- · Flexible fuel line NPT Connection
- · Primary and secondary fuel shutoff

Cooling System

- · Closed Coolant Recovery System
- · UV/Ozone resistant hoses
- · Factory-Installed Radiator
- · 50/50 Ethylene glycol antifreeze
- · Radiator drain extension

Engine Electrical System

- Battery charging alternator
- Battery cables
- Battery tray
- Rubber-booted engine electrical connections
- · Solenoid activated starter motor

ALTERNATOR SYSTEM

- UL2200 Genprotect™
- · Class H insulation material
- 2/3 Pitch
- · Skewed Stator
- · Brushless Excitation
- · Sealed Bearings
- · Amortisseur winding
- · Full load capacity alternator

GENERATOR SET

- · Internal Genset Vibration Isolation
- Separation of circuits high/low voltage
- Separation of circuits multiple breakers
- · Wrapped Exhaust Piping
- · Standard Factory Testing
- · 2 Year Limited Warranty (Standby rated Units)
- . 1 Year Warranty (Prime rated units)
- Silencer mounted in the discharge hood (enclosed only)

ENCLOSURE (IF SELECTED)

- · Rust-proof fasteners with nylon washers to protect finish
- High performance sound-absorbing material (L1 & L2)
- Gasketed doors
- · Stamped air-intake louvers
- · Air discharge hoods for radiator-upward pointing
- Stainless steel lift off door hinges
- Stainless steel lockable handles
- . Rhino Coat™ Textured polyester powder coat

CONTROL SYSTEM

Control Panel

- · Digital H Control Panel Dual 4x20 Display
- · Programmable Crank Limiter
- · 7-Day Programmable Exerciser
- · Special Applications Programmable PLC
- RS-232/485
- · All-Phase Sensing DVR
- Full System Status
- · Utility Monitoring
- · Low Fuel Pressure Indication
- 2-Wire Start Compatible
- · Power Output (kW)
- · Power Factor
- kW Hours, Total & Last Run

- · Real/Reactive/Apparent Power
- · All Phase AC Voltage
- · All Phase Currents
- · Oil Pressure
- · Coolant Temperature
- · Coolant Level
- · Engine Speed
- · Battery Voltage
- Frequency
- · Date/Time Fault History (Event Log)
- . Isochronous Governor Control
- · Waterproof/sealed Connectors
- · Audible Alarms and Shutdowns
- · Not in Auto (Flashing Light)
- · Auto/Off/Manual Switch
- . E-Stop (Red Mushroom-Type)
- · NFPA110 Level I and II (Programmable)
- · Customizable Alarms, Warnings, and Events
- Modbus protocol
- Predictive Maintenance algorithm
- · Sealed Boards
- · Password parameter adjustment protection

- · Single point ground
- · 15 channel data logging
- . 0.2 msec high speed data logging
- · Alarm information automatically comes up on the display

Alarms

- Oil Pressure (Pre-programmable Low Pressure Shutdown)
- Coolant Temperature (Pre-programmed High Temp Shutdown)
- Coolant Level (Pre-programmed Low Level Shutdown)
- · Low Fuel Pressure Alarm
- Engine Speed (Pre-programmed Over speed Shutdown)
- **Battery Voltage Warning**
- Alarms & warnings time and date stamped
- Alarms & warnings for transient and steady state conditions
- Snap shots of key operation parameters during alarms & warnings
- Alarms and warnings spelled out (no alarm codes)

INDUSTRIAL SPARK-IGNITED GENERATOR SET **EPA Certified Stationary Emergency**

CONFIGURABLE OPTIONS

ENGINE SYSTEM

General

- O Engine Block Heater
- O Oil Heater
- O Air Filter Restriction
- O Stone Guad (Open Set Only)

Engine Electrical System

- O 10A & 2.5A UL battery charger
- O Battery Warmer

ALTERNATOR SYSTEM

- O Alternator Upsizing
- O Anti-Condensation Heater
- O Tropical Coating
- O Permanent Magnet Excitation

CIRCUIT BREAKER OPTIONS

- O Main Line Circuit Breaker
- O 2nd Main Line Circuit Breaker
- O Shunt Trip and Auxiliary Contact
- O Electronic Trip Breaker

GENERATOR SET

- O Gen-Link Communications Software (English Only)
- O Extended Factory Testing (3 Phase Only)
- O IBC Seismic Certification
- O 8 Position Load Center
- O 2 Year Extended Warranty
- O 5 Year Warranty
- O 5 Year Extended Warranty

ENCLOSURE

- O Standard Enclosure
- O Level 1 Sound Attenuation
- O Level 2 Sound Attenuation
- O Steel Enclosure
- O Aluminum Enclosure
- O 150 MPH Wind Kit
- O 12 VDC Enclosure Lighting Kit
- O 120 VAC Enclosure Lighting Kit
- O AC/DC Enclosure Lighting Kit
- O Door Alarm Switch

CONTROL SYSTEM

- O NFPA 110 Compliant
- O Remote Relay Board (8 or 16)
- O Oil Temperature Sender with Indication
- O Remote E-Stop (Break Glass-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Surface Mount)
- O Remote E-Stop (Red Mushroom-Type, Flush Mount)
- O Remote Communication Bridge
- O Remote Communication Ethernet
- O 10A Run Relay
- O Ground Fault Indication and Protection **Functions**

ENGINEERED OPTIONS

ENGINE SYSTEM

- O Coolant heater ball valves
- O Fluid containment pans

ALTERNATOR SYSTEM

O 3rd Breaker Systems

CONTROL SYSTEM

- O Spare inputs (x4) / outputs (x4) H Panel Only
- O Battery Disconnect Switch

GENERATOR SET

- O Special Testing
- O Battery Box

ENCLOSURE

- O Motorized Dampers
- O Intrusion Alert Door Switch
- O Ambient Heaters

RATING DEFINITIONS

Standby - Applicable for a varying emergency load for the duration of a utility power outage with no overload capability.

Prime - Applicable for supplying power to a varying load in lieu of utility for an unlimited amount of running time. A 10% overload capacity is available for 1 out of every 12 hours. The Prime Power option is only available on International applications. Power ratings in accordance with ISO 8528-1, Second Edition

EPA Certified Stationary Emergency

APPLICATION AND ENGINEERING DATA

General		Cooling System	
		•	
Make	Generac	Cooling System Type	Pressurized Closed
Cylinder #	8	Water Pump Flow -gal/min (l/min)	26 (98)
Туре	V	Fan Type	Pusher
Displacement - L (cu ln)	8.9L (540)	Fan Speed (rpm)	2330
Bore - mm (in)	114.23 (4.49)	Fan Diameter mm (in)	558 (22)
Stroke - mm (in)	107.15 (4.25)	Coolant Heater Wattage	1500
Compression Ratio	10.5:1	Coolant Heater Standard Voltage	120 V
ntake Air Method	Naturally Aspirated		
Number of Main Bearings	5		
Connecting Rods	Forged	Fuel System	
Cylinder Head	Cast Iron	Fuel Type	Natural Gas, Propane Vapor
Cylinder Liners	No	Carburetor	Down Draft
gnition	High Energy	Secondary Fuel Regulator	Standard
Piston Type	Aluminum Alloy	Fuel Shut Off Regulator	Standard
Crankshaft Type	Forged Steel	Operating Fuel Pressure (Standard)	11" - 14" H ₂ 0
ifter Type	Hydraulic Roller	Operating Fuel Pressure (Optional)	7" - 14" H ₂ 0
ntake Valve Material	Steel Alloy		
xhaust Valve Material	Stainless Steel		
Hardened Valve Seats	Yes	Engine Electrical System	
Engine Governing		System Voltage	12 VDC
Governor	Electronic	Battery Charging Alternator	Standard
Frequency Regulation (Steady State)	±0.25%	Battery Size	See Battery Index 0161970SBY
		Battery Voltage	12 VDC
ubrication System		Ground Polarity	Negative
Dil Pump Type	Gear		
Dil Filter Type	Full-flow sping-on cartridge	<u> </u>	
Crankcase Capacity - L (qts)	8.5 (8.0)		

ALTERNATOR SPECIFICATIONS

390mm	Standard Excitation	Brushless	
4	Bearings	Sealed Ball	
Revolving	Coupling	Direct Drive	
Н	Prototype Short Circuit Test	Yes	
Н	Voltage Regulator Type	Full Digital	
<5%	Number of Sensed Phases	All	
<50	Regulation Accuracy (Steady State)	±0.25%	
	4 Revolving H H <	4 Bearings Revolving Coupling H Prototype Short Circuit Test H Voltage Regulator Type <5% Number of Sensed Phases	4 Bearings Sealed Ball Revolving Coupling Direct Drive H Prototype Short Circuit Test Yes H Voltage Regulator Type Full Digital <5% Number of Sensed Phases All

SG100 | 9.0L | 100 kW

EPA Certified Stationary Emergency

OPERATING DATA

POWER RATINGS

		Natural Gas	Propane Vapor
Single-Phase 120/240 VAC @1.0pf	100 kW	Amps: 417	Amps: 417
Three-Phase 120/208 VAC @0.8pf	100 kW	Amps: 347	Amps: 347
Three-Phase 120/240 VAC @0.8pf	100 kW	Amps: 301	Amps: 301
Three-Phase 277/480 VAC @0.8pf	100 kW	Amps: 150	Amps: 150
Three-Phase 347/600 VAC @0.8pf	100 kW	Amps: 120	Amps: 120

STARTING CAPABILITIES (sKVA)

sKVA vs. Voltage Dip

480 VAC								208/240 VAC					
Alternator	kW	10%	15%	20%	25%	30%	35%	10%	15%	20%	25%	30%	35%
Standard	100	79	118	157	197	236	275	59	89	118	148	177	206
Upsize 1	130	116	174	232	290	348	406	87	131	174	218	261	305

FUEL CONSUMPTION RATES*

Natural Gas - ft 3/hr (m 3/hr)

Propane Vapor - ft 3/hr (m 3/hr)

 Percent Load	Standby	Percent Load	Standby
25%	391 (11.1)	25%	157.4 (4.5)
50%	669 (19.0)	50%	269.9 (7.6)
75%	904 (25.6)	75%	364.4 (10.3)
100%	1116 (31.6)	100%	449.8 (12.7)

^{*} Fuel supply installation must accommodate fuel consumption rates at 100% load.

COOLING

		Standby
Air Flow (inlet air combustion and radiator)	ft³/min(m ³/min)	5797 (164.2)
Coolant Flow per Minute	gal/min (l/min)	26 (98)
Coolant System Capacity	gal (I)	6.0 (22.7)
Heat Rejection to Coolant	BTU/hr	390,000
Max. Operating Ambient Temperature (before derate)	°F (°C)	122 (50)
Maximum Radiator Backpressure	in H₂0	0.5

COMBUSTION AIR REQUIREMENT

	Standby
Flow at Rated Power cfm (m3/min)	282 (7.9)

ENGINE

EXHAUST

		Standby			Standby
Rated Engine Speed	rpm	1800	Exhaust Flow (Rated Output)	cfm (m³/min)	866 (24.5)
Horsepower at Rated kW**	hp	149	Max. Backpressure (Post Turbo)	inHg (Kpa)	1.5 (5.1)
Piston Speed	ft/min	1275	Exhaust Temp (Rated Output - post silencer)	°F (°C)	1230 (666)
BMEP	psi	125	Exhaust Outlet Size (Open Set)	mm (in)	63.5 (2.5)

 $[\]ensuremath{^{**}}$ Refer to "Emissions Data Sheet" for maximum bHP for EPA and SCAQMD permitting purposes.

Deration – Operational characteristics consider maximum ambient conditions. Derate factors may apply under atypical site conditions. Please consult a Generac Power Systems Industrial Dealer for additional details. All performance ratings in accordance with ISO3046, BS5514, ISO8528 and DIN6271 standards.

EPA Certified Stationary Emergency

DIMENSIONS AND WEIGHTS*

OPEN SET (Includes Exhaust Flex)

94.2 (2394) x 40 (1016) x 47.5 (1206) LxWxHin (mm) Weight lbs (kg) 2064 (936.2)

STANDARD ENCLOSURE

LxWxHin (mm) 111.79 (2839.5) x 40.46 (1027.8) x 56.18 (1427)

Weight lbs (kg)

Steel: 2708 (1228) Aluminum: 2413 (1094)

LEVEL 1 ACOUSTIC ENCLOSURE

LxWxHin (mm) 129.42 (3287.2) x 40.46 (1027.8) x 56.18 (1427)

Weight lbs (kg)

Steel: 2798 (1269.2) Aluminum: 2355 (1068)

LEVEL 2 ACOUSTIC ENCLOSURE

LxWxHin (mm) 111.81 (2840) x 40.46 (1027.8) x 68.61 (1742.8)

Weight lbs (kg)

Steel: 3022 (1370.8) Aluminum: 2431 (1103)

*All measurements are approximate and for estimation purposes only.

YOUR FACTORY RECOGNIZED GENERAC INDUSTRIAL DEALER

Specification characteristics may change without notice. Please consult a Generac Power Systems industrial Dealer for detailed installation drawings.

STATEMENT OF EXHAUST EMISSIONS 2015 SPARK-IGNITED, SCAQMD CERTIFIED

Month Company Femily Femily Cept # Cept # THC NOX Cept RPM Mile														
Model Engline Free				EDA Engles			201011		G	rams/bhp-l	ır.			
FORCEST 2.4 PROMISSION 1.70 No. No. No. 1.40 4.		Model	Engine		Fuel			21.14					ВНР	Fuel Flow (lb/hr)
OFFICE 2.4 FORDISSIONAL UPG No		QTA25	2,4	FGNXB02 42NN	NG	No	NR	FGNXB02_42NN-005	2,14	2.37	93 95	1800	38.39	16,52
BOOKED S.A. PROMISSION CLL NOT Very SANCE Promotor State Color Color		QTA25	2,4	FGNX802,42NL	LPG	No	NR		-				_	17.59
BOOKED S. A. FORWERS CALL U.P.D. V.P.S. DOZIES FORWERS CALL-009 D.P.D. D. D.P.D. D		SG035	5.4	FGNXB05_42L1	NG	Yes	530212	15	0.38	0.22	101	1800	97	24.91
BIRDING S.A. FICHORDS SELT N.D. Yes SECTION PROMPTION S.A. P. S.A. P					-	Yes			-					29,13
BIGGORD 6.4 FORWERS AND 1.00 7.00	٦	SG040	5.4				-			- 127				24.91
BOODS S. A. PONDISS ALL IND Val. SSST13 PONDISS ALL D. 38 0.52 0.64 1800 11.56 0.50	1 8				-									29.13
BODD S. A. POINS ALL INS	S)	SG045			NG						757		- 57	- 1
BIOLIDE S. A. POLICIOS CALL INC Vel SECTION POLICION CALL CATE D. 28 D. 22 D. 64 1800 \$1.170 20.1	SS	SG045	-						- 52				- 70	175
1966 1966									- 2.2					
1966 1966	홅		100		-					- 10	177		-	
BIOLOGIC B.B. FORMORIS REAL LPG Vest 470347 FORMORIS RELIGION 0.01 0.05 0.05 1600 0.65 0.05 1600 0.05 0	<u> </u>								-					
\$60000 6 6 PCN-0000 8ELL NO Yes	1 2					1,22							-	
\$60000 6 6 PCN-0000 8ELL NO Yes	\$									- 21				-
\$60000 6 6 PCN-0000 8ELL NO Yes	불													
SCHOOL S. Prichage Stat. Unit Ves 47008 Frichage Stat. Carl Ves 47008 Frichage Stat. Carl Ves 578422 Frichage Stat. Carl Ves 678422 Frichage Stat. Carl Ves	S =								- 17	100	2524		- 01	
SCHOOL S. Prichage Stat. Unit Ves 47008 Frichage Stat. Carl Ves 47008 Frichage Stat. Carl Ves 578422 Frichage Stat. Carl Ves 678422 Frichage Stat. Carl Ves	Smg													41,00
## SCORE 8.0 FONDERS BILL LPG Ves 975823 PGINGRE BILL 2028 0.04 0.13 0.30 1800 127 88 44.6 ## SCORE 9.0 FONDERS BILL LPG Ves 645-329 FGINGRE BILL 2029 0.38 0.76 0.41 1100 128 31 387 ## SCORE 9.0 FONDERS BILL LPG Ves 645-329 FGINGRE BILL 2029 0.38 0.76 0.41 1100 128 31 387 ## SCORE 9.0 FONDERS BILL LPG Ves 645-329 FGINGRE BILL 2029 0.68 0.05 0.02 3000 1100 128 01 4.3 ## BG130 (LPF) 9.8 FONDERS BILL NG & LP Ves 440073 FGINGRE BILL 2023 0.68 0.05 0.05 0.02 3000 123 46 72.3 ## BG130 (LPF) 9.0 FONDERS BILL NG & LP Ves 440073 FGINGRE BILL 2023 0.68 0.05 0.06 3000 126 60 221 00 ## BG130 (LPF) 9.0 FONDERS BILL NG Ves 573274 FGINGRE BILL 2025 0.06 0.24 0.01 1500 1500 145 00 4.3 ## BG130 (LPF) 9.0 FONDERS BILL NG Ves 573274 FGINGRE BILL 2025 0.06 0.24 0.01 1500 1500 131 16 4.5 ## BG130 (LPF) 9.0 FONDERS BILL NG Ves 543-22 FONDERS BILL 2025 0.06 0.24 0.00 0.7 1500 131 16 4.5 ## BG130 (LPF) 9.0 FONDERS BILL NG Ves 543-22 FONDERS BILL 2025 0.06 0.24 0.00 0.7 1500 131 16 4.5 ## BG130 (LPF) 9.0 FONDERS BILL NG Ves 543-22 FONDERS BILL 2025 0.06 0.24 0.00 0.11 1500 135 16 4.5 ## BG130 (LPF) 9.0 FONDERS BILL LPF Ves 543-22 FONDERS BILL 2025 0.06 0.06 0.00 0.11 1500 135 16 4.5 ## BG130 (LPF) 9.0 FONDERS BILL LPF Ves 543-22 FONDERS BILL 2025 0.00 0.06 0.13 1500 135 16 4.5 ## BG130 (LPF) 9.0 FONDERS BILL LPF Ves 543-22 FONDERS BILL 2025 0.00 0.06 0.13 1500 135 16 4.5 ## BG130 (LPF) 9.0 FONDERS BILL LPF Ves 543-22 FONDERS BILL 2025 0.00 0.06 0.13 1500 135 16 0.00 ## BG130 (LPF) 9.0 FONDERS BILL LPF Ves 543-22 FONDERS BILL 2025 0.00 0.03 0.02 1500 0.00 135 16 0.00 ## BG130 (LPF) 9.0 FONDERS BILL LPF			1777								1 1 2 2 2			42,35
SCORD P.O. PGN0808 BILL NO Yes 643428 PGN0808 BILL CORD			-		-						11774			39.76
SCIOLO B.D. FORNING BOLZ IPG Yes SASASS FORNING BOLZ-230 0.08 0.58 0.50 1800 122-40 44.3					LPG	Yes	575823	FGNXB08.02L2-028	0,04	0,13	0,30	1800	127,89	44,69
## SG130 (PP) 6.8 PGN9808 82C3 NG & LP Ves 480473 PGN9808 82C3-033 0.08 0.05 0.92 3000 193.48 77.3 ## SG150 (PP) 0.8 PGN9808 82C1 NG & LP Ves 480099 PGN9808 82C1-035 0.18 0.14 1.54 3000 231.00 91.3 ## SG150 (LPF) 9.0 PGN9808 82C1 NG Ves 673274 PGN9808 82C1-035 0.08 0.24 0.01 1800 148.00 48.8 ## SG100 (LPF) 9.0 PGN9808 82C1 NG Ves 673274 PGN9808 82C1-035 0.08 0.24 0.01 1800 158.00 43.8 ## SG100 (LPF) 9.0 PGN9808 82C1 NG Ves 673274 PGN9808 82C1-035 0.30 0.40 0.79 1800 133.18 43.5 ## SG100 (LPF) 9.0 PGN9808 82C1 NG NG Ves 673274 PGN9808 82C1-035 0.34 0.008 1.10 1800 133.73 43.4 ## SG100 (LPF) 9.0 PGN9808 82C2 LPV Ves 543426 PGN9808 82C2-035 0.34 0.008 0.10 1800 133.73 43.4 ## SG100 (LPF) 9.0 PGN9808 82C2 LPV Ves 543427 PGN9808 82C2-035 0.00 0.08 0.13 1800 159.75 53.0 ## SG130,150 (LPF) 9.0 PGN9808 82C3 NG NG Ves 573276 PGN9808 82C3-053 0.10 0.03 0.02 1800 220.30 71.8 ## SG130,150 (LPF) 9.0 PGN9808 82C3 NG NG Ves 573276 PGN9808 82C3-053 0.10 0.03 0.02 1800 220.30 71.8 ## SG130,150 (LPF) 9.0 PGN9808 82C3 NG NG Ves 573277 PGN9808 82C3-053 0.10 0.03 0.02 1800 220.30 71.8 ## SG130,150 (LPF) 9.0 PGN9808 82C3 NG NG Ves 573277 PGN9808 82C3-053 0.10 0.03 0.02 1800 220.30 71.8 ## SG130,150 (LPF) 9.0 PGN9808 82C3 NG NG Ves 573277 PGN9808 82C3-053 0.10 0.03 0.02 1800 220.30 71.8 ## SG130,150 (LPF) 9.0 PGN9808 82C3 NG NG Ves S73277 PGN9808 82C3-053 0.10 0.03 0.02 1800 220.30 71.8 ## SG130,150 (LPF) 9.0 PGN9808 82C3 NG NG NG NG NG NG NG N			9.0	- 11	NG	Yes	543428	FGNXB08.92L1-029	0.38	0,76	0.41	1800	126,31	39,71
BG150 (PP) 0.8 FGN9008 82C3 NG A LP Yes 440098 FGN9008 82C3-033 0.18 0.14 1.54 3800 231.00 91.3	_		9.0	FGNXB08,92L2	LPG	Yes	543429	FGNX808 92L2-030	0.08	0,68	0.30	1800	126.40	44,34
SCION B.O. FONDSON RECT: NG Yes S43423 FONDSON RECT: ACC Color ACC A		SG130 (DF)	6,8	FGNXB06,82C3	NG & LP	Yes	480473	FGNX806,82C3-033	0,08	0,05	0,92	3000	193.49	72,31
8G100 (LPF) 8 0 FONDB08 82C1 NGLPF, Yes 543425 FONDB08 82C1-035 0.06 0.240 0.01 1800 133.16 43.8 63.0 (LPF) 8 0.0 FONDB08 82C1 NGLPF, Yes 543425 FONDB08 82C1-035 0.30 0.400 0.079 1800 133.16 43.8 63.0 (LPF) 8 0.0 FONDB08 82C1 NGLPF, Yes 543425 FONDB08 82C1-035 0.34 0.008 1.10 1800 133.16 43.8 63.0 (LPF) 8 0.0 FONDB08 82C2 LPF, Yes 543425 FONDB08 82C1-035 0.30 0.60 0.13 1800 135.78 44.5 45.4 63.0 (LPF) 8 0.0 FONDB08 82C2 LPF, Yes 543427 FONDB08 82C1-035 0.00 0.00 0.0 11.0 1800 155.78 45.4 64.4 63.0 (LPF) 8 0.0 FONDB08 82C2 LPF, Yes 543427 FONDB08 82C2-0365 0.07 0.04 0.03 0.002 1800 155.6 54.4 63.0 (LPF) 8 0.0 FONDB08 82C3 NGLPF, Yes 543427 FONDB08 82C3-0353 0.07 0.04 0.03 0.002 1800 120.0 156.15 54.4 64.4 64.4 64.4 64.4 64.4 64.4 64.		SG150 (DF)	8,8	FGNXB06,82C3	NG & LP	Yes	480089	FGNXB06 82C3-033	0,18	0,14	1,54	3600	231,00	91,34
	î I	SG100	9.0	FGNXB08 92C1	NG	Yes	543423	FGNX808 92C1-035	0.17	0.003	0.06	1800	148.90	46.86
SG100 (DF) 8.0 FGN9808 92C1 NG/LPL Yes S43424 FGN9808 92C1-038 0.34 0.008 1.10 1800 135.75 45.4		SG100 (LPF)	9,0	FGNXB08 92C1	NG	Yes	573274	FGNX808,92C1-035	0,06	0.240	0.01	1800	156.00	43,83
### State		8G100 (DF)	9.0	FGNXB08 92C1	NG/LPV	Yes	543425	FGNX808.92C1-035	0.30	0.400	0.79	1800	133,16	45,36
SG100 B 0 FGNNB08 82C2 LPL Yes S43427 FGNNB08 92C2-036 0.07 0.04 0.30 1800 18015 54.4		SG100 (DF)	9,0	FGNXB08 92C1	NG/LPL	Yes	543424	FGNX808 92C1-035	0,34	0.006	1,10	1800	135,75	45,47
SG130,150 9 0 FGN0808 82C3 NG Yes S73276 FGN0808 82C3-053 0.10 0.03 0.02 1800 220.30 71.8		SG100	9,0	FGNX808.92C2	LPV	Yes	543426	FGNX808,92C2-038	0,03	0.08	0,13	1800	157,67	53,08
SG130,150 (DF) 9 0 FGN808 BZC3 NG/LPV Yes 573273 FGN808 BZC3-053 0.10 0.03 0.02 1800 220.30 71.8		SG100	9,0	FGNXB08 92C2	LPL	Yes	543427	FGNX808 92C2-038	0.07	0.04	0.30	1800	156,15	54,47
BG130,150 (PF) 9.0 FGNXB108 92C3 NG/LPL Yes 573271 FGNXB08 92C4-054 0.02 0.57 1.30 1800 230.30 71.8 G130, 150 9.0 FGNXB08 92C4 LPL Yes 573269 FGNXB08 92C4-054 0.02 0.57 1.30 1800 230.30 75.4 SG130, 150 9.0 FGNXB10.8 92C4 LPL Yes 573269 FGNXB08 92C4-054 0.02 0.57 1.30 1800 230.30 75.4 SG130, 150 12.0 FGNXB12.8 92C2 NG Yes 532838 FGNXB12.9 92C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG130, 150 12.9 FGNXB12.9 2C2 NG Yes 532838 FGNXB12.9 2C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGNXB12.9 2C2 NG Yes 532838 FGNXB12.9 2C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGNXB12.9 2C2 NG Yes 532838 FGNXB12.9 2C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGNXB12.9 2C2 NG Yes 532838 FGNXB12.9 2C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGNXB12.9 2C2 NG Yes 532838 FGNXB12.9 2C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGNXB12.9 2C2 NG Yes 532838 FGNXB12.9 2C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGNXB12.9 2C2 NG Yes 532838 FGNXB12.9 2C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.7 SG1.0 SG200 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.1 125.5 SG275 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.1 125.5 SG275 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.1 125.5 SG275 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.1 125.5 SG275 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.1 125.5 SG275 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.1 125.5 SG275 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.1 125.5 SG275 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.58 0.03 0.53 1800 307.8 10.1 125.5 SG275 12.9 FGNXB12.9 2C2 NG Yes 538818 FGNXB12.9 2C2-042 0.59 0.00 0.05 0.05 1800 307.8 10.1		SG130,150	9.0	FGNX808 92C3	NG	Yes	573276	FGNX808.92C3-053	0,10	0,03	0.02	1800	230.30	71,97
SG 130, 150 9.0 FGN2808 BZC4 LPV Yes 573287 FGN2808 92C4-054 0.02 0.57 1.30 1800 230.30 75.4		SG130,150 (DF)	9.0	FGNXB08 92C3	NG/LPV	Yes	573273	FGNXB08,92C3-053	0,10	0,03	0.02	1800	230,30	71,97
## ST330, 150		SG130,150 (DF)	9,0	FGNXB08 92C3	NG/LPL	Yes	573271	FGNXB08,92C3-053	0,10	0.03	0,02	1800	230,30	71.97
SG150 12.9 FGN/812.92C2 NG Yes S32838 FGN/812.92C2-042 0.53 0.13 0.53 1800 307.87 107.6 MG150 12.9 FGN/812.92C2 NG Yes S32838 FGN/812.92C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG200 12.9 FGN/812.92C2 NG Yes S32838 FGN/812.92C2-042 0.53 0.13 0.53 1800 307.87 107.6 MG200 12.9 FGN/812.92C2 NG Yes S32838 FGN/812.92C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG230 12.9 FGN/812.92C2 NG Yes S32838 FGN/812.92C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG230 12.9 FGN/812.92C2 NG Yes S38816 FGN/812.92C2-042 0.53 0.13 0.53 1800 307.87 107.6 SG230 12.9 FGN/812.92C2 NG Yes S38816 FGN/812.92C2-042 0.38 0.03 0.53 1800 379.10 125.3 SG250 12.9 FGN/812.92C2 NG Yes S38816 FGN/812.92C2-042 0.38 0.03 0.53 1800 379.10 125.3 SG250 12.9 FGN/812.92C3 NG Yes S38816 FGN/812.92C3-042 0.38 0.03 0.53 1800 379.10 125.3 SG275 12.9 FGN/812.92C3 NG Yes S5811 FGN/812.92C3-043 0.06 0.06 0.81 2150 477.00 184.2 SG300 12.9 FGN/812.92C3 NG Yes S57131 FGN/812.92C3-043 0.06 0.06 0.81 2150 477.00 184.2 SG300 12.9 FGN/812.92C3 NG Yes S57132 FGN/812.92C3-043 0.06 0.06 0.81 2150 477.00 184.2 SG275, 300 14.2L FGN/814.22C1 NG Yes S75826 FGN/814.22C1-047 0.06 0.05 0.39 1800 304.00 89.5 SG250 14.2L FGN/814.22C1 NG Yes S75826 FGN/814.22C1-047 0.06 0.05 0.39 1800 374.00 120.8 MG250 14.2L FGN/814.22C1 NG Yes S75826 FGN/814.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGN/814.22C1 NG Yes S75826 FGN/814.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGN/814.22C1 NG Yes S75826 FGN/814.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGN/814.22C1 NG Yes S75826 FGN/814.22C1-		SG130, 150	9.0	FGNX808.92C4	LPV	Yes	573267	FGNXB08 92C4-054	0,02	0.57	1,30	1800	230,30	75.43
MG250 12.9 FGNXB12.92C2 NG Yes 538818 FGNXB12.92C2-042 0.38 0.03 0.53 1800 378.10 125.3		SG130, 150	9.0	FGNXB08.92C4	LPL	Yes	573269	FGNXB08,92C4-054	0.02	0.57	1.30	1800	230.30	75.43
MG250 12.9 FGNXB12.92C2 NG Yes 538818 FGNXB12.92C2-042 0.38 0.03 0.53 1800 378.10 125.3	🗒	SG150	12.9	FGNXB12.92C2	NG	Yes	532838	FGNXB12.92C2-042	0,53	0.13	0.53	1800	307.87	107,99
MG250 12.9 FGN2812.92C2 NG Yes 538818 FGN2812.92C2-042 0.38 0.03 0.53 1800 378.10 125.3	8	MG150	12.9	FGNXB12.92C2	NG	Yes	532839	FGNXB12.92C2-042	0,53	0,13	0.53	1800	307.87	107,99
MG250 12.9 FGN2812.92C2 NG Yes 538818 FGN2812.92C2-042 0.38 0.03 0.53 1800 378.10 125.3	튤	SG175					_			10000				107,99
MG250 12.9 FGNXB12.92C2 NG Yes 538818 FGNXB12.92C2-042 0.38 0.03 0.53 1800 378.10 125.3	<u> </u>	SG200			NG									107,99
MG250 12.9 FGNXB12.92C2 NG Yes 538818 FGNXB12.92C2-042 0.38 0.03 0.53 1800 378.10 125.3	in the		100						- 117	7.27			1.0	107.99
MG250 12.9 FGN2812.92C2 NG Yes 538818 FGN2812.92C2-042 0.38 0.03 0.53 1800 378.10 125.3	본								11,	154	197	-	152	125,30
MG250 12.9 FGN2812.92C2 NG Yes 538818 FGN2812.92C2-042 0.38 0.03 0.53 1800 378.10 125.3	Spar													125,30
SG275 12.9 FGNXB12.92C3 NG Yes 557131 FGNXB12.92C3-043 0.06 0.06 0.81 2150 477.00 164.2 SG300 12.9 FGNXB12.92C3 NG Yes 557131 FGNXB12.92C3-043 0.06 0.06 0.81 2150 477.00 164.2 MG300 12.9 FGNXB12.92C3 NG Yes 557132 FGNXB12.92C3-043 0.06 0.06 0.81 2150 477.00 164.2 SG150,175,200 14.2L FGNXB14.22C1 NG Yes 575824 FGNXB14.22C1-047 0.08 0.05 0.39 1800 304.00 98.5 SG230, 250 14.2L FGNXB14.22C1 NG Yes 575828 FGNXB14.22C1-047 0.08 0.05 0.39 1800 304.00 98.5 SG275, 300 14.2L FGNXB14.22C1 NG Yes 575828 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG150, 200 14.2L FGNXB14.22C1 NG Yes 575825 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGNXB14.22C1 NG Yes 575827 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.8 MG300 14.2L FGNXB14.22C1 NG Yes 575829 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.8 SG350, 400 21.9 FGNXB14.22C1 NG Yes 558477 FGNXB14.22C1-047 0.18 0.14 0.82 1800 638.00 201.1 MG350, 400 21.9 FGNXB21.92C1 NG Yes 558478 FGNXB21.82C1-037 0.18 0.14 0.82 1800 638.00 201.1			17/7						-177		0.00		1,100	125.30
SG300 12 9 FGNXB12 92C3 NG Yes 557131 FGNXB12.92C3-043 0.06 0.08 0.81 2150 477.00 184.2 MG300 12.9 FGNXB12.92C3 NG Yes 557132 FGNXB12.92C3-043 0.06 0.08 0.81 2150 477.00 184.2 SG150,175,200 14 2L FGNXB14.22C1 NG Yes 575824 FGNXB14.22C1-047 0.08 0.05 0.39 1800 304.00 98.5 SG230, 250 14 2L FGNXB14.22C1 NG Yes 575828 FGNXB14.22C1-047 0.08 0.05 0.39 1800 304.00 98.5 SG275, 300 14.2L FGNXB14.22C1 NG Yes 575828 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG150, 200 14 2L FGNXB14.22C1 NG Yes 575825 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGNXB14.22C1 NG Yes 575825 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGNXB14.22C1 NG Yes 575827 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG350 14.2L FGNXB14.22C1 NG Yes 575827 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.8 MG350 14.2L FGNXB14.22C1 NG Yes 575829 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.8 SG350, 400 21.9 FGNXB14.22C1 NG Yes 558477 FGNXB21.82C1-037 0.18 0.14 0.82 1800 638.00 201.1 MG350, 400 21.9 FGNXB21.92C1 NG Yes 558478 FGNXB21.82C1-037 0.18 0.14 0.82 1800 638.00 201.1	ق ا	\vdash												
MG300 12.9 FGNX812.92C3 NG Yes 557132 FGNX812.92C3-043 0.06 0.08 0.81 2150 477.00 164.2 SG150,175,200 14.2L FGNX814.22C1 NG Yes 575824 FGNX814.22C1-047 0.08 0.05 0.39 1800 304.00 98.5 SG230, 250 14.2L FGNX814.22C1 NG Yes 575828 FGNX814.22C1-047 0.08 0.05 0.39 1800 304.00 98.5 SG275, 300 14.2L FGNX814.22C1 NG Yes 575828 FGNX814.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG150, 200 14.2L FGNX814.22C1 NG Yes 575825 FGNX814.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGNX814.22C1 NG Yes 575827 FGNX814.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGNX814.22C1 NG Yes 575827 FGNX814.22C1-047 0.03 0.03 0.17 1800 480.00 142.8 MG350 400 21.9 FGNX814.22C1 NG Yes 575829 FGNX814.22C1-047 0.03 0.03 0.17 1800 480.00 142.8 SG350, 400 21.9 FGNX821.92C1 NG Yes 558477 FGNX821.82C1-037 0.18 0.14 0.82 1800 638.00 201.1 MG350, 400 21.9 FGNX821.92C1 NG Yes 558478 FGNX821.82C1-037 0.18 0.14 0.82 1800 638.00 201.1													-	
SG150,175,200 14 2L FGNXB14 22C1 NG Yes 575824 FGNXB14.22C1-047 0.08 0.05 0.39 1800 304.00 88.5 SG230, 250 14 2L FGNXB14.22C1 NG Yes 575828 FGNXB14.22C1-047 0.08 0.05 0.39 1800 304.00 88.5 SG275, 300 14.2L FGNXB14.22C1 NG Yes 575828 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG150, 200 14.2L FGNXB14.22C1 NG Yes 575825 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGNXB14.22C1 NG Yes 575825 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.8 MG250 14.2L FGNXB14.22C1 NG Yes 575827 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.8 MG300 14.2L FGNXB14.22C1 NG Yes 575829 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.8 SG350, 400 21.9 FGNXB14.22C1 NG Yes 558477 FGNXB14.22C1-037 0.18 0.14 0.62 1800 638.00 201.1 MG350, 400 21.9 FGNXB21.92C1 NG Yes 558478 FGNXB21.92C1-037 0.18 0.14 0.82 1800 638.00 201.1			_		\vdash				100	1000	27			164.20
SG230, 250 14 2L FGNXB14 22C1 NG Yes 575828 FGNXB14 22C1-047 0.08 0.05 0.39 1800 304.00 88.5 SG275, 300 14 2L FGNXB14 22C1 NG Yes 575828 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.6 MG150, 200 14 2L FGNXB14.22C1 NG Yes 575825 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.6 MG250 14 2L FGNXB14.22C1 NG Yes 575827 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.6 MG300 14 2L FGNXB14.22C1 NG Yes 575829 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.6 SG350, 400 21.9 FGNXB21.92C1 NG Yes 558477 FGNXB21.92C1-037 0.18 0.14 0.82 1800 638.00 201.1 MG350, 400 21.		_						2000						164 20
SG275, 300 14.2L FGNXB14.22C1 NG Yes 575828 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.6 MG150, 200 14.2L FGNXB14.22C1 NG Yes 575825 FGNXB14.22C1-047 0.04 0.02 0.23 1800 374.00 120.6 MG250 14.2L FGNXB14.22C1 NG Yes 575827 FGNXB14.22C1-047 0.03 0.03 0.17 1800 460.00 142.6 MG300 14.2L FGNXB14.22C1 NG Yes 575829 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.6 SG350, 400 21.9 FGNXB21.92C1 NG Yes 558477 FGNXB21.92C1-037 0.18 0.14 0.82 1800 638.00 201.1 MG350, 400 21.9 FGNXB21.92C1 NG Yes 558478 FGNXB21.92C1-037 0.18 0.14 0.82 1800 638.00 201.1		2.77		0.000				- CO - CO		6726	(5)			98 54
MG150, 200 14 2L FGNXB14 22C1 NG Yes 575825 FGNXB14 22C1-047 0.04 0.02 0.23 1800 374 00 120.6 MG250 14 2L FGNXB14 22C1 NG Yes 575827 FGNXB14 22C1-047 0.03 0.03 0.17 1800 460 00 142.6 MG300 14 2L FGNXB14 22C1 NG Yes 575829 FGNXB14 22C1-047 0.03 0.03 0.17 1800 480 00 142.6 SG350, 400 21.9 FGNXB14.22C1 NG Yes 558477 FGNXB21.92C1-037 0.18 0.14 0.82 1800 638 00 201.1 MG350, 400 21.9 FGNXB21.92C1 NG Yes 558478 FGNXB21.92C1-037 0.18 0.14 0.82 1800 638 00 201.1					_			V		1000				98,54
MG250 14.2L FGNXB14.22C1 NG Yes 575827 FGNXB14.22C1-047 0.03 0.03 0.17 1800 460.00 142.6 MG300 14.2L FGNXB14.22C1 NG Yes 575829 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.6 SG350, 400 21.9 FGNXB14.22C1 NG Yes 558477 FGNXB21.92C1-037 0.18 0.14 0.82 1800 638.00 201.1 MG350, 400 21.9 FGNXB21.92C1 NG Yes 558478 FGNXB21.92C1-037 0.18 0.14 0.82 1800 638.00 201.1					_									120.84
MG300 14.2L FGNXB14.22C1 NG Yes 575829 FGNXB14.22C1-047 0.03 0.03 0.17 1800 480.00 142.6 SG350, 400 21.9 FGNXB21.92C1 NG Yes 558477 FGNXB21.92C1-037 0.18 0.14 0.62 1800 638.00 201.1 MG350, 400 21.9 FGNXB21.92C1 NG Yes 558478 FGNXB21.92C1-037 0.18 0.14 0.62 1800 638.00 201.1			11592						-177					120,84
SG350, 400 21.9 FGNXB21.92C1 NG Yes 558477 FGNXB21.92C1-037 0.18 0.14 0.62 1800 638.00 201.1 MG350, 400 21.9 FGNXB21.92C1 NG Yes 558478 FGNXB21.92C1-037 0.18 0.14 0.62 1800 638.00 201.1		\vdash			NG	Yes	575827	FGNX814 22C1-047	0.03	0.03	0.17	1800	460.00	142 87
MG350, 400 21.9 FGNX821.82C1 NG Yes 558478 FGNX821.82C1-037 0.18 0.14 0.82 1800 638.00 201.11		MG300	14.2L	FGNXB14.22C1	NG	Yes	575829	FGNX814 22C1-047	0,03	0.03	0.17	1800	480.00	142.87
		SG350, 400	21.9	FGNX821,92C1	NG	Yes	558477	FGNXB21 92C1-037	0.18	0.14	0.82	1800	636 00	201.17
SG350,400 (LPF) 21.9 FGNX821.92C1 NG Yes 573266 FGNX821.92C1-037 0.18 0.14 0.62 1800 636.00 201.1		MG350, 400	21.9	FGNX821,92C1	NG	Yes	558478	FGNXB21 92C1-037	0.18	0.14	0.62	1800	636 00	201.17
		SG350,400 (LPF)	21.9	FGNXB21.92C1	NG	Yes	573266	FGNX821 92C1-037	0.18	0.14	0.82	1800	636.00	201.17
MG350,400 (LPF) 21.9 FGNX821.92C1 NG Yes 573265 FGNX821.92C1-037 0.18 0.14 0.82 1800 638.00 201.1		MG350,400 (LPF)	21.9	FGNXB21 92C1	NG	Yes	573265	FGNX821.92C1-037	0.18	0,14	0.82	1800	638.00	201,17

NR: Not Required

OF: Dual Fuel

LPF: Units with optional Low Pressure Fuel system

Refer to page 2 for definitions and advisory notes.

STATEMENT OF EXHAUST EMISSIONS 2015 SPARK-IGNITED, SCAQMD CERTIFIED

2015 EPA SPARK-IGNITED EXHAUST EMISSIONS DATA

Effective since 2009, the EPA has implemented exhaust emissions regulations on stationary spark-ignited (gaseous) engine generators for emergency applications. All Generac spark-ignited gensets, including SG, MG, QTA and QT series gensets, that are built with engines manufactured in 2009 and later meet the requirements of 40CFR part 60 subpart JJJJ and are EPA certified. These generator sets are labeled as EPA Certified with decals affixed to the engines' valve covers.

The attached documents summarize the general information relevant to EPA certification on these generator sets. This information can be used for submittal data and for permitting purposes, if required. These documents include the following information:

EPA Engine Family

The EPA Engine Family is assigned by the Manufacturer under EPA guidelines for certification purposes and appears on the EPA certificate.

Catalyst Required

Indicates whether an exhaust catalyst and Air/Fuel Ratio control system are required on the generator set to meet EPA certification requirements. Generally, units rated 80kW and smaller do not require a catalyst to meet EPA certification requirements. Please note that some units that do not require a catalyst to meet EPA requirements do need a catalyst if the California SCAQMD option is selected. Please see "California SCAQMD" below for additional information on this option.

Combination Catalyst or Separate Catalyst

SG and MG series generator sets typically utilize a single combination catalyst/silencer as part of meeting EPA certification requirements. Many QT and QTA series generator sets use the same engines as SG and MG series units, but have different exhaust configurations that require the use of conventional silencers with additional separate catalysts installed.

EPA Certificate Number

Upon certification by the EPA, a Certificate Number is assigned by the EPA.

Emissions Actuals -Grams/bhp-hr

Actual exhaust emission data for Total Hydrocarbons (THC), Nitrogen Oxides (NOx) and Carbon Monoxide (CO) that were submitted to EPA and are official data of record for certification. This data can be used for permitting if necessary. Values are expressed in grams per brake horsepowerhour; to convert to grams/kW-hr, multiply by 1.341. Please see advisory notes below for further information.

California Units, SCAQMD CEP Number

A separate low-emissions option is available on many Generac gaseous-fueled generator sets to comply with the more stringent South Coast Air Quality Management District requirements that are recognized in certain areas in California. Gensets that include this option are also EPA Certified.

General Advisory Note to Dealers

The information provided here is proprietary to Generac and its' authorized dealers. This information may only be disseminated upon request, to regulatory governmental bodies for emissions permitting purposes or to specifying organizations as submittal data when expressly required by project specifications, and shall remain confidential and not open to public viewing. This information is not intended for compilation or sales purposes and may not be used as such, nor may it be reproduced without the expressed written permission of Generac Power Systems, Inc.

Advisory Notes on Emissions Actuals

- The stated values are actual exhaust emission test measurements obtained from units representative of the generator types and engines described.
- Values are official data of record as submitted to the EPA and SCAQMD for certification purposes. Testing was conducted in accordance with prevailing EPA
 protocols, which are typically accepted by SCAQMD and other regional authorities.
- · No emission values provided are to be construed as guarantees of emissions levels for any given Generac generator unit.
- · Generac Power Systems reserves the right to revise this information without prior notice.
- Consult state and local regulatory agencies for specific permitting requirements.
- The emissions performance data supplied by the equipment manufacturer is only one element required toward completion of the permitting and installation process. State and local regulations may vary on a case-by-case basis and must be consulted by the permit applicant/equipment owner prior to equipment purchase or installation. The data supplied herein by Generac Power Systems cannot be construed as a guarantee of installability of the generator set.
- The emission values provided are the result of multi-mode, weighted scale testing in accordance with EPA testing regulations, and may not be representative of any specific load point.
- The emission values provided are not to be construed as emission limits.

THREE PASS FIRETUBE **HOT WATER BOILER**

■ HURST "PERFORMANCE" BOILERS ■

LPW SERIES THROUGH THE DOOR DESIGN!

Hot Water Applications

- Specifiable using the attributes of the LPW
- Remains classified as a modified scotch, fire tube type boiler.
- Efficiencies tested in our lab at >83% on nat-
- Smaller foot print. As compared to the LPE, can be installed in tighter places.
- Semi wet-back construction

Capacities From 30 to 125 HP

> 30 PSI Water [60 PSI Water Optional]

HEAVIEST DESIGNED BOILER IN ITS CLASS

Designed, constructed and stamped in accordance with the requirements of the ASME Boiler Codes.

UL Approved Forced Draft Burners

Inspected and registered with the National Board of Boiler & Pressure Vessel Inspectors.

BOILER SPECIFICATIONS (ALL DIMENSIONS ARE IN INCHES)

RIGHT SIDE VIEW

BOILER HORSEPOWER			30	40	50	60	70	80	100	125
HEATING SURFACE	FIRESIDE	SQ.FT.	120	160	200	240	280	320	400	500
MBH OUTPUT, HOT WATER			1004	1339	1674	2009	2343	2678	3348	4184
FIRING RATE, GAS	1,000 BTU	CFH	1260	1680	2100	2520	2940	3360	4200	5250
FIRING RATE, #2 OIL	140,000 BTU	GPH	9	12	15	18	21	24	30	37 1/2
WIDTH WITHOUT TRIM		IN	31	31	31	34 1/2	34 1/2	3472	34 1/2	34 1/2
WIDTH WITH TRIM		IN	38	38	38	42	42	42	42	42
WIDTH WITH GAS TRAIN		IN	49	49	49	52	52	52	52	52
BOILER LENGTH		IN	37	49	61	55	67	79	91	106
OVERALL LENGTH	STD. BURNER	IN	86	98	114	111	123	140	152	169
SUPPLY HEIGHT		IN	71 1/2	71 1/2	71 1/2	76 5/8	76 5/8	76 5/8	76 5/8	76 5/8
HEIGHT WITH TRIM		IN	79	79	79	86	86	86	86	86
LENGTH OF SKID		IN	54	66	78	72	84	96	108	123
SUPPLY SIZE		ΙN	4	4	4	6	6	6	6	6
SUPPLY LOCATION		IN	18 1/2	24 1/2	30 1/2	27 1/2	33 1/2	39 1/2	45 1/2	50 1/2
RETURN SIZE		IN	4	4	4	4	4	4	4	4
RETURN LOCATION		IN	27 1/4	27 1/4	27 1/4	32	32	32	32	36
BOILER DRAIN SIZE		IN	1	1 1/4	1 1/4	1 1/4	1 1/2	1 1/2	1 1/2	1 1/2
STACK DIAMETER, O.D.		IN	10	10	10	12	12	12	12	14
STACK HEIGHT		IN	60 1/4	60 1/4	60 1/4	67 1/4	67 1/4	67 1/4	67 1/4	67 1/4
TO CENTER OF STACK		IN	6 7/8	6 7/8	6 7/8	8 1/4	8 1/4	8 1/4	8 1/4	9 1/4
REAR SMOKEBOX DEPTH		IN	13 3/4	13 3/4	13 3/4	15 3/4	15 3/4	15 3/4	15 3/4	17 3/4
TUBE PULL SPACE		IN	38	50	62	56	68	80	92	107
SHIPPING WEIGHT		LBS	3150	3900	4500	4350	5100	5900	6600	7500
WATER CONTENT - WATER	FLOODED	GALS	135	185	240	250	310	390	430	500
BOILER HORSEPOWER			30	40	50	60	76	80	100	125

CONNECTIONS FOUR INCHES AND SMALLER ARE FEMALE THREAD, 6" CONNECTIONS ARE 150 LB. FLANGES. * STUDDING FLANGE.

HOT WATER BOILER

STANDARD EQUIPMENT

BOILER: Three pass design for 30 psi hot water (available for 60 psi water). Factory assembled with trim and, tested in accorance with ASME code, UL, and CSD-1 codes. Steel turbolators inserted in third pass for maximum heat-transfer control.

STANDARD BOILER TRIM: Kunkle safety relief valve, operating temperature control, high limit temperature control with manual reset, 3 1/2" combination pressure & temperature gauge, M&M 750 low water cut-off control with manual reset.

BURNER: UL listed with pre-piped, wired and factory tested forced draft power burners for:

- Natural Gas
- Propane (LP) Gas
- No. 2 (Diesel) Oil
- Combination Gas/Oil.

■ HURST "PERFORMANCE" BOILER ■

- Factory Assembled, Prewired and Tested
- No Field Assembly Required
- UL Listed Boiler/Burner Packages
- Fully Assembled, Pre-piped, Prewired, Pressure Tested Gas Trains
- Complies with ASME, UL, CSD-1 and ASHRAE Standards
- High Efficiency, Low Stack Temperatures
- Customer Service Support Through National Network of Sales, Service, St Training and Parts by Factory Representatives

LPW BOILER FEATURES

Modified Scotch designed to fit through a standard 36" x 80" door opening Up to 125 HP (4,184 mbh output).

The Hurst LPW "Performance" boiler is America's most heavily designed and built boiler in its class. Consider the features and specify the Hurst LPW Series.

- A welded steel firetube boiler, the LPW has extra-heavy 13-gauge tubes for extended life.
 All tubes are attached to the tube sheets by rolling and flaring. There are no welded tubes in the LPW.
- 2. Thickest materials used in the industry . . .
 - A. Boiler shell is 5/16" thick boiler plate 30-40 HP / 3/8" 50-125 HP.
 - B. Twin boiler tube sheets are 1/2" thick boiler plate.
 - C. Insulation is 2" ceramic wool and is lagged with 22-gauge boiler jacket.
 - D. Extra heavy 4" channel iron boiler skids.
- 3. Designed to last with special industrial grade features . . .
 - A. Couplings are 3,000 psi.
 - B. Flanged, detachable front and rear smoke boxes.
 - Brass nuts on front access panels, brass plugs in factory pre-piped crosses and tees on trim.

hurstboiler.com

Revised 06/05

P. O. Drawer 530 21971 Highway 319 N. Coolidge, Georgia 31738 (229) 346-3545 (Tel.) (229) 346-3874 (Fax.) e-mail: info@hurstboiler.com